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O.1 Consumer fee distortions in the full model

In Section 2, I developed an illustrative model of a monopolistic platform that yields the following

decomposition of distortions in platform consumer fees:

cpr − cso = µprB︸︷︷︸
Market power

− aDso︸ ︷︷ ︸
Offline business stealing

+
[
b̄soS − b̃soS

]
︸ ︷︷ ︸

Spence distortion

+
[
b̃soS − b̃prS

]
︸ ︷︷ ︸

Displacement distortion

, (1)

where the superscripts “pr” and “so” denote quantities associated with the allocations maximizing plat-

form profits and total welfare, respectively. Throughout this appendix, I call equation (1) the distortion

decomposition formula. Recall that cpr is the profit-maximizing (“privately optimal”) consumer fee, cso is

the total-welfare-maximizing (“socially optimal”) consumer fee, a is a restaurant’s benefit from a direct

sale, Dso is the diversion rate from platform to direct sales under the socially optimal fees, and b̄soS ,

b̃soS , b̃
pr
S are terms related to network-externality-based distortions as defined in the main text. In the

counterfactual analysis of Section 7, I apply this decomposition to the full structural model. Here, I

detail this application.

First, applying the decomposition formula to the full model requires amending the formula to incorporate

platform competition. This is because changes in the fee of platform f affect sales on rival platforms,

which in turn impact restaurant profits and rival platform profits. I develop an extended version of the

illustrative model that captures these impacts. In this extended model, I take the consumer fees cg and

commission rates rg of rival platforms g as fixed and assess the optimality of platform f ’s fees conditional

on rival fees.

Suppose that the focal platform faces competition from rival platforms g ∈ F , a set of rival platforms,

and that rival g’s profits are

Λg = (cg + rgpg −mcg)Sg,

where pg is the price charged by restaurants on platform g (assumed constant) and mcg is platform g’s

marginal cost (also assumed constant). Last, Sg are platform g’s sales, which I assume are a differentiable,

decreasing function sales S1 of the focal platform. In the extension of the illustrative model, total welfare

is defined as

W = CS +RP + Λ+
∑
g∈F

Λg,

where CS is consumer surplus, RP are restaurant profits (defined in the next paragraph), Λ are the

profits of the focal platform, and Λg are the profits of rival platform g.

Introducing rival platforms g changes the expression for restaurant profits recorded in Section 2 to:

RP = a0S0 +
∑
g∈F

agSg + ([1− r]p1 − κ̄1(J))S1 −KJ,

where a0 is restaurant profit from a direct sale and ag is restaurant profit from a sale on platform

g, which in turn depends on prices, commissions, and costs on platform g (all of which are assumed

constant).

The analogue of the distortion decomposition formula for the generalized model with platform competi-

tion is

cpr − cso = µpr
B︸︷︷︸

Market power

− a0D
so
0︸ ︷︷ ︸

Offline business
stealing

−
∑
g∈F

agD
so
g︸ ︷︷ ︸

Online business
stealing

+
[
b̄soS − b̃soS

]
︸ ︷︷ ︸

Spence
distortion

+
[
b̃soS − b̃prS

]
︸ ︷︷ ︸
Displacement
distortion

−
∑
g∈F

(cg + rg −mcg)Dg︸ ︷︷ ︸
Rival profits distortion

, (2)
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where D0 = −dS0/dS1 and Dg = −dSg/dS1 are diversion ratios from ordering on the focal platform to

ordering directly and on rival platform g, respectively.

I use the distortion decomposition formula (2) to separately quantify distortions affecting consumer fees

in the structural model. In applying the formula, I consider one focal platform f at a time, holding rival

platforms’ fees fixed at the privately optimal levels when computing objects associated with platform

f ’s profit-maximizing fees and at the socially optimal levels when computing objects associated with

platform f ’s socially optimal fees.

Applying the distortion decomposition formula to the full model requires generalizing its constituent

terms. Unlike the illustrative model, the full model incorporates heterogeneity across geography and

restaurant type. To avoid excessive notation, I use z to denote a ZIP/restaurant type pair and let Z
denote the set of all such pairs.

I extend each component of the decomposition by replacing quantities from the illustrative model with

their analogues in the structural model. Although I do not formally re-derive the decomposition under

the full model, these generalizations closely approximate the distortions computed by solving the full

model directly for privately and socially optimal fees. This is shown later in Figure O.1.

As a preliminary, define Sf =
∑

z∈Z Sfz as platform f ’s total sales across ZIP/type pairs and

p̄f =

∑
z∈Z

∑
G:f∈G pzGfSfGz

Sf

as the sales-weighted price for a restaurant meal on platform f . Here, pzGf is the price charged by a

restaurant with ZIP/type z that belongs to the platform set G on ordering channel f (i.e., f is either a

platform or the direct ordering channel, f = 0). These prices vary by G in equilibrium. Similarly, SzGf

are the sales of a restaurant of ZIP/type z belonging to the platform set G through ordering channel f .

The corresponding sales-weighted marginal cost is κ̄f = (
∑

z κfzSfz)/Sf .

I now provide the full model distortions for a focal platform f . The full-model analogue of the market

power distortion is

µB,f = −
Sf

∂Sf/∂cf
.

The offline business stealing distortion in the illustrative model is

−a0D0 = a0
dS0
dS1

. (3)

In the full model, this becomes ∑
z∈Z

∑
G
(pzG0 − κz0)

∂SzG0/∂cf
∂Sf/∂cf

. (4)

Here, κzf is the marginal cost of a restaurant with ZIP/type equal to z on platform f , which assumed

constant within a ZIP/type cell.

The analogue of the online business stealing distortion is

∑
g ̸=f

∑
z∈Z

∑
G:g∈G

([1− rg]pzGg − κzg)
∂SzGg/∂cf
∂Sf/∂cf

.

The mean gross (i.e., pre-commission) seller benefit from a platform transaction in the full model is

b̄S,f = p̄f − κ̄f .
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The platform’s additional commission revenue from an incremental consumer order is

b̃S,f = rf p̄1 × (1 + ϵf ).

In the illustrative model,

ϵ =
S1
rp1

d[rp1]

dS1

is the elasticity of per-transaction commission charges with respect to the number of consumer orders.

This elasticity is positive when restaurants are willing to pay higher commissions in order to join a

platform boasting a higher number of consumer orders. The first-order condition of platform profits with

respect to S1 is

c+ rp1 −mc+

(
∂c

∂S1
+
d[rp1]

dc

)
S1 = 0,

or,

c+ rp1(1 + ϵ)−mc− µB = 0.

An alternative first-order condition with respect to c is

c+ rp1 −mc+
S1

dS1/dc
= 0,

which implies that

ϵ =
S1

(
1

dS1/dc
− ∂c

∂S1

)
rp1

.

The numerator is the difference between the inverse total semi-elasticity of platform sales with respect to

consumer fees—which reflects the dependence of restaurants’ platform adoption J on consumer fees—and

the inverse partial semi-elasticity of platform sales with respect to consumer fees. This latter elasticity

measures the response of sales to changes in consumer fees holding fixed restaurant uptake of platforms.

The difference between these inverse elasticities measures the extent to which the overall impacts of

consumer fee increases on sales are explained by indirect effects on platform uptake among restaurants.

The analogue of ϵ for platform f in the full model is

ϵf =
Sf

(
1

dSf/dcf
− 1

∂Sf/∂cf

)
rf p̄f

.

Here, dSf/dcf is the derivative of equilibrium sales with respect to consumer fees, which includes changes

in sales due to restaurant platform adoption and pricing responses to fee changes. In contrast, ∂Sf/∂cf

is the partial derivative of sales with respect to consumer fees, holding fixed restaurant platform adoption

decisions and prices.

Given the differences between the full structural model and the illustrative model (including geographical

heterogeneity and the absence of insulating tariffs), the distortion decomposition formula provides only

an approximation to the total distortion in consumer fees obtained by solving the full structural model

for privately and socially optimal fees. To evaluate the accuracy of the approximation, I compare the

full-model total distortion to the total distortion predicted by summing together individual distortion

terms in the generalized decomposition formula (2). Figure O.1 plots these two quantities by county for

each major platform. The two are highly correlated, with R2 values ranging from 0.96 to 0.98 across

the three leading platforms. When weighting county/platform observations by order volume under the

privately optimal fees, the overall correlation between the model-generated and formula-predicted total

distortions is 0.97. In addition to tracking variation closely, the formula-predicted distortions are similar
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Figure O.1: Actual consumer fee gaps versus formula-predicted gaps

(a) DoorDash
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(b) Uber Eats
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(c) Grubhub
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to the magnitudes of the actual distortions.

O.1.1 Sources of variation in overall consumer fee gap

I now investigate the sources of variation in the gap cprfm − csofm between platform f ’s privately optimal

platform fee in county m and its socially optimal fee gap in county m. To do so, I conduct two sorts

of regression exercises. First, I regress the fee gap on each distortion individually, the distortions being

market power, offline business stealing, online business stealing, Spence, displacement, rival profits, and

other, which captures the part of the fee gap that is unexplained by the six distortions identified in the

illustrative model as generalized to reflect platform competition. Table O.1 reports the R2 from these

bivariate regressions in tis R2
k column. Next, for each distortion k, I regress the fee gap on all distortions

except k and report the R2 from this regression as R2
−k in Table O.1. Lower values of R2

−k indicate

higher explanatory value conditional on the other distortions.

Table O.1 indicates that, in terms of R2
−k, the network-externality-related Spence and displacement dis-

tortions best explain variation in the gap between privately and socially optimal consumer fees: excluding

one of these variables reduces the R2 from a regression of the fee gap on distortions from 1.00 to under

0.50. Although excluding market power reduces the R2 only to 0.93, market power alone explains 38%

of variation in the fee gap. Business stealing alone explains 21% of variation in the fee gap. The “Other”

distortion arising from factors excluded from the illustrative model explains comparatively little of the

fee gap.

O.2 Why do platforms charge fixed consumer fees?

Platforms can often charge either fixed fees that do not depend on seller prices or fees that are proportional

to these prices. Each sort of fee has its advantages and disadvantages. The primary benefits of a

proportional fee is that it makes the total fee paid by merchants increasing in merchant prices, which

encourages merchants to reduce their prices, raising sales and thus platform revenue. This argument

is developed by Shy and Wang (2011). Additionally, Wang and Wright (2017) and Wang and Wright

(2018) argue that proportional fees allow platforms to practice third-degree price discrimination when

the costs of goods sold on platforms are heterogeneous and consumer valuations from these goods are

proportional to their costs.

A proportional fee, however, may distort consumer choices of menu items when the platform’s cost of

a delivery does not depend on the value of the ordered item. If the platform’s cost is indeed fixed, the

5



Table O.1: Sources of variation in overall consumer fee distortion

Distortion (k) R2
k (only k) R2

−k (all but k)

Market power 0.38 0.94
Offline business stealing 0.00 0.98
Online business stealing 0.11 0.99
Spence 0.00 0.55
Displacement 0.03 0.53
Rival profits 0.08 0.99
Other 0.07 0.94

Notes: this table reports R2 measures from regressions of the overall gap cprfm − csofm between platform f ’s privately optimal
consumer fee in county m and its socially optimal fee in market m on each of the constituent distortions contribution to
this overall gap. In particular, R2

k provides the R2 from a regression of the overall gap on only the indicated distortion k
whereas R2

−k provides the R2 from a regression of the overall gap on all distortions except the indicated distortion k.
Each observation in the platform/county panel is weighted by platform f ’s order volume in county m. The sample size is
N = 416.

socially optimal price structure involves restaurants pricing at marginal cost and platforms charging a

fixed fee equal to the cost of facilitating a delivery. The fact that a fixed fee is reflective of cost relates

to the argument of Wang and Wright (2017) that a fee structure including both fixed and proportional

components is optimal when platforms have fixed costs of facilitating transactions (e.g., paying a courier

to make a delivery). When the platform charges a proportional fee and merchants’ goods are substitutable

from the consumer’s perspective, the platform inefficiently steers consumers toward ordering menu items

with lower prices (and hence lower platform fees). This inefficiency leaves less social surplus available for

the platform to capture. This argument is relevant in the food delivery industry wherein restaurants sell

menu items with substantial variation in cost. Given that both fixed and proportional fees have relative

advantages from the platform’s perspective, it is ambiguous whether platforms should charge fixed or

proportional fees.

In practice, food delivery platforms charge both fixed and proportional consumer fees. This may be a

prudent way for the platform to both set prices corresponding to its cost structure (i.e., in which delivery

costs do not depend on the prices of ordered items) while also encouraging merchants to set lower prices.

I explore this possibility through a numerical exercise. In this exercise, a merchant sells two goods, goods

1 and 2, which have marginal costs κ1 and κ2 ≤ κ1. When p̄1, p̄2 are the post-fee prices for these two

menu items, sales for the goods are S1(p̄1, p̄2) and S2(p̄1, p̄2). Assume that the merchant makes sales to

consumers exclusively through the platform. Under fixed fees c, the platform’s profits are

Λ = (c−mc) [S1(p̄1(c), p̄2(c)) + S2(p̄1(c), p̄2(c))]

where mc are the platform’s marginal costs. Here, p̄j(c) = pj(c) + c, where pj(c) denotes the merchant’s

price (excluding the fee) under a fee level c. I abstract away from commissions to focus on the optimal

choice of consumer fee structure. The restaurant’s profits are

Π = (p1 − κ1)S1(p̄1(c), p̄2(c)) + (p2 − κ2)S2(p̄1(c), p̄2(c)).

The restaurant’s optimal prices satisfy the following first-order condition:[
p1

p2

]
=

[
κ1

κ2

]
−

[
∂S1
∂p1

∂S2
∂p1

∂S1
∂p2

∂S2
∂p2

]−1 [
S1

S2

]
. (5)
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Under proportional fees levied at rate q against restaurant prices, the platform’s profits are

Λ = (qp1(q)−mc)S1(p̄1(q), p̄2(q)) + (qp2(q)−mc)S2(p̄1(q), p̄2(q)).

Here, the post-fee prices are p̄j(q) = pj(q)(1 + q). The restaurant’s profits are

Π = (p1 − κ1)S1(p̄1(q), p̄2(q)) + (p2 − κ2)S2(p̄1(q), p̄2(q)).

The restaurant’s optimal prices satisfy the following first-order condition:[
p1

p2

]
=

[
κ1

κ2

]
− 1

1 + q

[
∂S1
∂p1

∂S2
∂p1

∂S1
∂p2

∂S2
∂p2

]−1 [
S1

S2

]
. (6)

A comparison of (5) and (6) illustrates why proportional fees encourage restaurants to reduce their prices.

When a restaurant facing fixed platform fees raises its price, the fee-inclusive price paid by consumers

rises by the same amount. When the platform instead uses proportional fees, the fee-inclusive price paid

by consumers rises by the amount of the increase times (1 + q); this, in effect, makes the demand curve

faced by the restaurant 1 + q times more elastic, putting downward pressure on prices.

To show why fixed fees may be preferable to the platform, I conduct a numerical exercise with the model

above. In this exercise, I consider two cost structures: the first, which I call heterogeneous costs, has

(κ1, κ2) = (10, 30) whereas the second, which I call homogeneous costs, has (κ1, κ2) = (20, 20). Under

both merchant cost structures, the platform’s marginal cost is mc = 4. Demand is given by

Sj(p1, p2) =
eδj−αpj

1 +
∑2

k=1 e
δk−αpk

,

where α = 0.6 and (δ1, δ2) are selected so that the market shares of goods 1 and 2 are 15% and 75%

under the socially efficient prices and fees. In addition to pure fixed fees and pure proportional fees, I

consider a hybrid regime in which the platform may charge both of these sorts of fees.

Tables O.2 and O.3 contain results. First consider sales of each good under the heterogeneous cost

structure, which are reported by Table O.2a. The table shows that, under fixed fees, the ratio of sales

of the two goods is the same as under socially efficient pricing, but that the ratio is severely distorted

under proportional fees (“Prop.”). This is because proportional fees are higher for the more costly good

2, which leads consumers to inefficiently substitute toward the less costly good. Under the homogeneous

cost structure, this problem does not arise as platform fees do not vary between the two goods; see Table

O.2b. As shown by Table O.3, the fixed fee structure achieves greater platform profits and social welfare

than the proportional fee structure under the heterogeneous cost structure because it does not induce

inefficient substitution toward the low-cost good 1. In the homogeneous cost structure, however, the

proportional fee structure outperforms the fixed fee structure given that it reduces restaurant markups.

Under each cost structure, the hybrid fee structure delivers higher platform profits and social welfare

than either the purely fixed or purely proportional fee structures. With that said, the improvement upon

platform profits and total welfare is small under the heterogeneous cost structure.

The numerical exercise illustrates motivations for platforms to use both fixed and proportional fees. I

ultimately specify fixed consumer fees because including multiple sorts of consumer fees would complicate

the model and distract from the primary problem of the balance of fees between consumers and merchants

that the article addresses. Additionally, platforms charge proportional fees to merchants, leaving the

consumer side as the only place to incorporate potentially important fixed fees.
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Table O.2: Sales by good under fixed and proportional platform fees

(a) Heterogeneous costs

Regime
Sales Ratio

Good 1 Good 2 Good 2/1

Fixed 0.044 0.221 5.000
Prop. 0.161 0.001 0.007
Hybrid 0.069 0.201 2.893
Efficient 0.150 0.750 5.000

(b) Homogeneous costs

Regime
Sales Ratio

Good 1 Good 2 Good 2/1

Fixed 0.044 0.221 5.000
Prop. 0.049 0.247 5.000
Hybrid 0.087 0.436 5.000
Efficient 0.150 0.750 5.000

Table O.3: Welfare under fixed and proportional platform fees

(a) Heterogeneous costs

Regime
Consumer Profits Total
surplus Rest Plat welfare

Fixed 0.31 0.60 0.82 1.73
Prop. 0.18 0.21 0.36 0.75
Hybrid 0.31 0.59 0.84 1.74
Efficient 2.30 0.00 0.00 2.30

(b) Homogeneous costs

Regime
Consumer Profits Total
surplus Rest Plat welfare

Fixed 0.31 0.60 0.82 1.73
Prop. 0.35 0.52 0.99 1.86
Hybrid 0.74 0.00 1.83 2.58
Efficient 2.30 0.00 0.00 2.30

Notes: “Rest” indicates restaurant profits whereas “Plat” indicates platform profits.

O.3 Additional data description

O.3.1 Platform fees

Figure O.2 plots time series of the average platform consumer fees and commission revenue per order.

The figure includes separate time series for each platform and also for regions that adopted a commission

cap by May 2021 and those that did not. The figure shows that, in early 2020, platforms collected more

revenue from restaurants than from consumers. This pattern persevered in areas that did not adopt

commission caps. In areas that did adopt commission caps, the gap in revenues from consumer fees and

commissions shrank as these areas limited commissions.

O.3.2 Multi-homing patterns

I quantify multi-homing in the food delivery industry by computing measures of consumer and restaurant

multi-homing. The measure of consumer multi-homing for a pair of platforms f and f ′ equals the share

of pairs of consecutive orders placed on any platform made by the same consumer that contain a purchase

from f among those that also contain a purchase from f ′. This is not a measure of the extent to which

consumers have adopted multiple platforms but instead to which they actively order from multiple

platforms. To illustrate the measure, suppose that one consumer bought from DoorDash across two

consecutive orders and a second consumer bought from DoorDash and then Uber Eats. Then, the multi-

homing measure for f = Uber Eats and f ′ = DoorDash among these two consumers would be one

half.1 Table O.4a reports the results, which indicate that consumers do often switch between platforms

despite typically ordering from the same platform across consecutive orders. For example, 13% of the

1Another measure of consumer multi-homing is the average Herfindahl–Hirschman Index (HHI) of a consumer’s shares
of orders made across platforms:

¯HHI =
∑
i

ni∑
i′ ni′

F∑
f=1

s2if ,

where ni is the number of orders that consumer i placed on platforms and sif is the share of those orders that the consumer
placed on platform f . Among consumers residing in the 14 markets on which my study focuses during the second quarter
of 2021, ¯HHI equals 0.86, which indicates a high degree of purity in consumers’ platform-choice sequences.
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Table O.4: Multi-homing patterns

(a) Consumers of delivery platforms

Platform
Share of Share of pairs also

consecutive-order pairs including an order from...
including an order from... DD Uber GH PM

DD 0.53 1.00 0.13 0.06 0.02
Uber 0.42 0.17 1.00 0.06 0.02
GH 0.16 0.21 0.16 1.00 0.01
PM 0.04 0.24 0.24 0.06 1.00

(b) Restaurants listed on delivery platforms

Platform
Share Share of restaurants

listed on also listed on...
platform DD Uber GH PM

DD 0.34 1.00 0.55 0.50 0.33
Uber 0.27 0.68 1.00 0.57 0.39
GH 0.24 0.71 0.65 1.00 0.38
PM 0.14 0.79 0.76 0.65 1.00

Notes: Table O.4a reports, for each pair of platforms f and f ′, the share of pairs of consecutive orders placed by the same
consumer in April 2021 that include an order from f ′ among those that contain an order from f . Table O.4b reports the
share of restaurants on each major delivery platform that also belong to each other major delivery platform for April 2021.
Note that the figures in the “Share listed on platform” column do not necessarily add up to one; they are the shares of
restaurants on each platform considered individually.

consecutive-order pairs featuring a DoorDash order also feature an Uber Eats order.

I characterize restaurant multi-homing by computing the share of restaurants listed on each platform that

are also listed on each other platform. Table O.4 reports the results, which show that both consumers

and restaurants multi-home.

O.3.3 Time series patterns in ordering

One channel through which food delivery platforms could reduce direct ordering from restaurants is by

encouraging consumers to over-order and consume leftovers in subsequent meals rather than dining again.

To investigate this possibility, I estimate regressions of future ordering outcomes on contemporaneous

ordering activity.

The analysis is based on a user/day panel constructed from Numerator data. I restrict the sample to

core panelists who linked their email accounts with Numerator’s data collection application. The study

period runs from January 2019 to April 2021. I include users who placed at least one direct order and

at least one platform order during this period.

For each user/day observation (i, t), I construct the following variables: (i) an indicator for whether user

i placed a platform order on day t; (ii) an indicator for whether user i placed a direct order on day t;

(iii) indicators for whether user i placed at least one platform order within the next 3 and 7 days; and

(iv) indicators for whether user i placed at least one direct order within the next 3 and 7 days.

I estimate regressions of the form

yit = ϕi,month(t) + ψt + βdirectdirectit + βplatformplatformit + εit,

where yit is the outcome variable, which will be one of the variables characterizing short-term future
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ordering described above; ϕi,month(t) is a user/month fixed effect; ψt is a day fixed effect; platformit is

an indicator for user i placing a platform order on day t; and directit is an indicator for user i placing

a platform order on day t. The user/month fixed effects are included to richly control for time-varying

consumer preferences for online and offline ordering. The day fixed effects are included to flexibly control

for time trends in ordering. With these controls, the βdirect and βplatform capture short-term changes in

future ordering behaviour associated with placing a direct or platform order on day t

Table O.5 provides the results for each of the four outcome variables characterizing short-term future

ordering. lt also provides the mean values of these outcome variables and the sample size N . The results

indicate that consumers are less likely to order from a restaurant—either directly or through a platform—

within either 3 or 7 days of placing an order from a restaurant directly or on a platform. Additionally,

contemporaneous direct ordering subtracts more from future direct ordering than does contemporaneous

platform ordering. Similarly, contemporaneous platform ordering subtracts more from platform direct

ordering than does contemporaneous direct ordering. The results suggest that platform orders are not

more likely than direct orders to become leftovers that discourage future direct ordering.

Table O.5: Results from time series patterns regressions

Regressor
Future direct ordering Future platform ordering

Within 7 days Within 3 days Within 7 days Within 3 days

directit -0.060 (0.0007) -0.045 (0.0007) -0.001 (0.0004) -0.001 (0.0003)

platformit -0.004 (0.0018) -0.002 (0.0017) -0.112 (0.0010) -0.069 (0.0008)

Mean outcome 0.345 0.193 0.066 0.033
N 2947470

Notes: see the text of Online Appendix O.3.3 for a description of the regressions.

O.4 Validation of transactions datasets

In this appendix, I argue that the Numerator data used in the article’s analysis is representative of

US consumers. First, I compare demographics of Numerator panelists to those of the US at large as

measured via the US Census. Second, I compare market shares computed on the Numerator data to

those measured using an external dataset based on payment card transactions.

As noted in the main text, Numerator selects a subset of users who upload receipts to form its core panel.

It chooses this core panel to be representative of the US population. I find that the core panel matches

the US census well on demographics, with a few exceptions. Table O.6 compares the demographics of

Numerator core panelists who belonged to the panel throughout Q2 2021 (the sample period for model

estimation) with those of the US adult population as computed using public use microdata from the

American Community Survey (ACS) for 2021.2 The first panel of the table compares the share of the

Numerator panel and of the US population falling into various age groups. Numerator slightly under-

weights panelists under 35 years old and above 65 years old while overweighting middle-aged panelists.

The next panel compares income groups. Here, I use the family income variable in the ACS to measure

income of the US population. We see that the income group shares are close with the exception that

Numerator has a smaller share of panelists with incomes over $125,000 (20% versus 29% in the US adult

population). The following panel shows marital status shares. The shares are close, although Numerator

somewhat overweights married people (57% in Numerator compared to 50% in the US adult population).

Next comes a panel comparing the share of adults with children. I measure this variable in the ACS

using the “number of children in the household” variable. The share is 36% in both Numerator and the

2I use one year estimates and, in computing population shares, use the ACS person weights.

10



ACS. The final panel shows shares of ethnic groups. The comparison is complicated by the fact that Nu-

merator reports a single ethnicity variable whereas the ACS reports race and Hispanic status separately.

I assign the “Hispanic/Latino” ethnicity to all ACS respondents with a response to the Hispanic status

question other than “Not hispanic.” This method of assignment may be responsible for the fact that the

ACS share of Hispanic individuals is higher than in Numerator, and why the “White/Caucasian” share

is lower (some White Hispanic individuals may primarily identify as “White/Caucasian” in Numerator’s

single race/ethnicity question). Otherwise, the ethnicity shares are similar across Numerator and the

ACS.

Table O.6: Demographic composition of core Numerator panel (Q2 2021)

Group share Numerator ACS

18-34 0.21 0.29
35-44 0.22 0.17
45-54 0.21 0.16
55-64 0.24 0.17
65+ 0.13 0.22
Under $20k 0.12 0.11
$20k-40k 0.15 0.13
$40k-60k 0.16 0.14
$60k-80k 0.14 0.12
$80k-125k 0.24 0.21
Over $125k 0.20 0.29
Divorced 0.11 0.11
Married 0.57 0.50
Never married 0.27 0.31
Separated 0.02 0.02
Widower 0.04 0.06
Has children 0.36 0.36
White/Caucasian 0.69 0.61
Black or African American 0.11 0.12
Hispanic/Latino 0.12 0.17
Asian 0.07 0.06
Other 0.02 0.05

Figure O.3 compares market shares for April 2021 computed from the Numerator transactions panel to

those reported by the market research firm Second Measure, which estimates platforms’ market shares

based on payment card records, for March 2021. Market shares are similar across these two data sources.

This similarity assuages worries that my primary consumer panel is not representative of the population

on account of the fact that its records were collected through a mobile application.

O.5 Consumer fee indices

I construct indices of platform consumer fees to analyze fee-setting. The consumer fee index cfz for each

pair of a platform f and a ZIP z is defined by

cfz = DFfz + SFfz +RRfz,

where DFfz is a measure of platform f ’s delivery fees in ZIP z, SFfz is a measure of platform f ’s

service fee in z’s municipality, and RRfz is the regulatory response fee charged by f in z. Given that

delivery fees vary across orders placed within the same municipality at the same time, I defined DFfz as

a hedonic price index. This index, formally defined below in Online Appendix O.5.1, captures systematic
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differences in delivery fees across geography and platforms conditional on delivery distance, restaurant

characteristics, day-of-week, and time-of-day. I define SFfz as platform f ’s median service fee in ZIP

z’s municipality. Service fees are generally proportional to order subtotals; I use a subtotal of $30 to

compute service fees. Recall that the fee data does not include service fees for Grubhub. This omission

is not critical given that Grubhub did not enact regulatory response fees aside from a fee of $1 per order

in California. It does, however, limit information on Grubhub’s service fees. I use the Edison dataset

to overcome this limitation. The median and the sales-weighted mean of ZIPs’ ratios of average service

fees to average order value before taxes and fees are both 0.10 for Grubhub in this dataset; I therefore

use 10% as Grubhub’s service fee. Regulatory response fees apply to entire municipalities, so I compute

RRfz by taking the sum of such fees charged by platform f in ZIP z’s municipality. See Online Appendix

Table O.7 for a decomposition of fee indices into their components.

Table O.7: Decomposition of average fees

Fee DoorDash Uber Eats Grubhub Postmates

Delivery 1.87 1.58 2.91 3.43
Service 4.36 4.50 3.00 6.35
Regulatory Response 0.18 0.27 0.17 0.08

Notes: the table reports average components of platforms’ fee indices in dollars. Each figure in the table is an unweighted
average taken over ZIPs.

Table O.8 provides observation counts and sample means for the platform pricing datasets for Q2

2021.

O.5.1 Delivery fee measures

In analyzing platform fees, I use hedonic indices DFfz defined as expected delivery fees charged by

platforms f in ZIPs z conditional on a set of fixed order characteristics:

DFfz = E[dfkfz|xk = x̄, f, z], (7)

where dfkfz is the delivery fee charged for order k on platform f in ZIP z, xk are observable characteristics

of order k, and x̄ is a fixed vector of order characteristics. I estimate (7) using a 10-fold cross-validated

Lasso with delivery fee data from Q2 2021, and set x̄ to the average xk across all orders in my sample.

The estimating equation is

dfkfz = x′kβf + w′
zµf + ϕxdistk wdens

z + ϵkfz, (8)

where wz are characteristics of ZIP z and ϵkfz is an unobservable that is mean-independent of xk and wz,

f , and z. The observable characteristics included in wz are municipality indicators; county indicators;

Table O.8: Description of platform pricing data, Q2 2021

Delivery fees data Service/reg. response fees data

Platform # obs.
Avg. delivery Avg. wait

# obs.
Avg. service Avg. regulatory

fee ($) time (mins) fee (%) response fee ($)
DD 40437 2.18 29.16 3066 0.14 0.41
Uber 48062 1.93 41.64 4838 0.15 0.55
GH 688428 2.93 41.71 - - -
PM 2915 4.95 41.43 2915 0.20 0.53

Notes: the order-level dataset of fees charged by Postmates includes information on both delivery fees and fixed fees. This
explains why the number of observations for these two sort of fees coincide in the table.
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CBSA indicators; local density defined as the population within five miles of ZIP z; and several variables

measuring the demographic composition of the area within five miles of z.3 Note that I include indicators

for multiple levels of geography because it is important for my empirical analysis to flexibly capture fee

differences across geography. Last, xdistk is the delivery distance for order k and wdens
z is the local density

of z; I include their interaction to capture the possibility that the cost of increasing an order’s distance

depends on density due to traffic congestion.

There are several problems in estimating (8) by OLS: OLS is prone to overfitting in settings with

many regressors, and using OLS would require a somewhat arbitrary selection of a noncollinear set of

geographical indicators to include in wz. The Lasso does not suffer from these problems.4 In my setting,

the Lasso provides a data-driven method for selecting geographical indicators for inclusion in wz based

on their relevance in predicting delivery fees. It is only the coefficients for geographical characteristics wz

that I penalize in estimation. I apply the procedure explained above with delivery-fee records substituted

for waiting-time records to compute hedonic indices of expected waiting times.

O.6 Restaurant prices

I collected supplementary data on restaurant prices from platform and restaurant websites in December

2022 with the goal of measuring differences in restaurants’ prices for direct and for platform orders. To do

so, I randomly selected restaurants in various municipalities in the greater New York City metropolitan

area: New York, NY (360 restaurants); Hoboken, NJ (40 restaurants); and Bridgeport, New Haven,

Hartford, and Stamford, CT (250 restaurants). I drew these restaurants from the universe of restaurants

in the Data Axle data for 2021, as I did not have access to the 2022 data at the time of sampling.

Whereas Hoboken had a commission cap of 15% and New York had a commission cap of 20%, none of

the Connecticut municipalities had a commission cap. For each restaurant, I selected two menu items on

the restaurant’s website and recorded its price on the website. I then determined the price of the same

menu item on the restaurant’s listing on each food delivery platform to which the restaurant belonged.

For each combination of a menu item j and a platform f , I compute the ratio yjf of the menu item’s

price on platform f to its price as listed on the menu on the restaurant’s website.

Some restaurants were closed at the time of data collection, did not have websites, did not have recent

online menus, or had been mislabelled as restaurants in Data Axle despite not being restaurants. After

dropping these restaurants, the sample includes 134 restaurants in New York, 18 restaurants in Hoboken,

and 98 restaurants in Connecticut.

To assess the relationship between platform/direct pricing gaps and commission caps, I run the following

regression:

yjf = α+ βrj + εjf , (9)

where rj is the commission cap applying to restaurant j, or rj = 0.30 for restaurants j in areas without

commission caps (i.e., Connecticut). Here, the parameter α governs the extent to which restaurants

charge different prices on platforms than for direct orders independently of the commission level whereas

rj controls pass-through of commissions into platform prices. I cluster standard errors at the level of a

menu item j.

Table O.9 reports the results of the regression. The bottom two rows of the table show the predicted

ratios of platform to direct restaurant prices implied by the regression. The results suggest that a

3These variables include the shares of the population in various age groups, the share of the population over 15 years
of age that is married, and the shares of the population over 18 years of age having achieved various levels of educational
attainment.

4See Tibshirani (1996) for explication of the Lasso.
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restaurants partially pass through platform commissions into their online prices: a restaurant facing

15% commissions is predicted to charge 7% higher prices on platforms than for direct orders, whereas a

restaurant facing 30% commissions is predicted to charge 13% higher prices on platforms.

Table O.9: Restaurant prices and commission rates

Parameter Estimate

α 1.01
(0.04)

β 0.39
(0.19)

N 554
ŷjf (rj = 0.30) 1.13
ŷjf (rj = 0.15) 1.07

Notes: this table reports results from a regression based on equation (9) as estimated on the restaurant/platform-level panel
described in the main text. The ŷjf (rj = 0.30) row provides the predicted ratio of platform to direct prices under 30%
commissions. The ŷjf (rj = 0.15) row provides the predicted ratio of platform to direct prices under 15% commissions.
Asymptotic standard errors clustered at the menu item level are reported in parentheses.

O.7 Difference-in-differences analysis of commission caps

O.7.1 Implementation details

In this appendix, I describe details of the article’s difference-in-differences (DiD) analysis and provide ad-

ditional results. I conduct DiD analysis using three distinct datasets. The first is the ZIP/month/platform-

level panel provided by Edison, the second is consumer panel provided by Numerator, and the third is

data on the universe of restaurants on each food delivery platform as provided by YipitData. I estimate

the effects of commission caps on platform fees using the Edison data. These data provide variables

for (i) average order value including fees, tips, and taxes, (ii) average order value excluding fees, tips,

and taxes, (iii) average tips, and (iv) average taxes. I compute average fees by subtracting the sum of

(ii), (iii), and (iv) from (i). I use the Numerator panel to estimate the effects of commission caps on

restaurant order volumes. Before analyzing these data, I process them in several ways. First, I keep only

transactions made by a member of Numerator’s core panel whose e-mail address was linked to Numera-

tor’s data-collection app at the time of the transaction. I then aggregate the data to the panelist/month

level, keeping only panelist/month pairs for which the corresponding panelist had a linked e-mail address

during the corresponding month. For each panelist/month pair, I compute the number of orders placed

on each platform and not placed on any platform. Next, I aggregate to the ZIP3/month level, taking

an average of panelist/month-level order counts across panelists residing in each ZIP3. This yields a

ZIP3/month level panel of mean order counts among Numerator panelists. I use this panel to estimate

overall order volumes at the ZIP3/month level. To estimate order volumes, I run a Lasso regression

of mean order counts on ZIP3, state, and month fixed effects as well as interactions between (i) the

ZIP3 and month fixed effects and (ii) the state and month fixed effects. Here, I choose the penalization

parameter that minimizes 10-fold cross-validation prediction error. Then, I multiply the fitted values

from this regression by ZIP3 populations to obtain estimated order volumes by ZIP3. This approach

removes noise from the raw mean order counts, and it also resolves the problem of zero-valued mean

order counts; this is a problem because it prevents the application of the log transformation to these

order counts. The fitted mean order counts from the Lasso correlate strongly with the raw mean order

counts: for non-platform orders and platform orders, the correlation coefficients are 0.986 and 0.942,

respectively, across ZIP3/month pairs.

Multiple estimators appear in the literature on DiD research designs. The first is the standard two-way
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fixed effects (TWFE) estimator, which is an OLS estimator applied to linear equation with time fixed

effects, panel unit fixed effects, and treatment indicators. The estimating equation is

yfzt︸︷︷︸
Outcome

= ψfz + ϕft︸ ︷︷ ︸
ZIP and month
fixed effects

+ δfxzt︸ ︷︷ ︸
Treatment

+ w′
ztβ︸︷︷︸

Controls

+ϵfzt, (10)

where f denotes a platform, yfzt is the outcome variable (in the analysis of consumer fees, e.g., the log

of platform f ’s average consumer fees in ZIP z for month t), ψfz are platform/ZIP fixed effects, ϕft

are platform/month fixed effects, xzt is a measure of ZIP z’s commission cap policy during t, wzt are

control variables, and ϵzft is an unobservable. Here, δf is the effect of commission caps on the outcome

variable. The primary treatment variable xzt that I specify is an indicator for z having a commission

cap of 15% or lower.5 I also consider, though, specifications with a continuous treatment variable equal

to the commission rate applying in ZIP z. In addition to estimating (10), I estimate a version of the

model in which caps’ effects dynamically vary.6 I describe the controls wzt that I include later in this

appendix. The primary identifying assumption underlying the TWFE approach is that, conditional on

controls, the outcome in places that enacted caps would have followed the same trend as in places that

never enacted caps if caps had not been imposed.

Recent research in econometrics highlights problems affecting TWFE estimators in settings with het-

erogeneous effects and staggered interventions. To address these problems, I additionally compute

the interaction weighted (IW) estimator (Sun and Abraham 2021) and the estimator of Callaway and

Sant’Anna (2021), both of which are robust to heterogeneous treatment effects. The IW estimator is

an OLS estimator of an equation similar to (10) but including interactions of treatment indicators and

cohort-membership indicators, wherein cohorts are defined by time of treatment. Another estimator that

corrects problems affecting the TWFE estimator is that of Callaway and Sant’Anna (2021). The version

of the Callaway and Sant’Anna (2021) estimator that I compute generalizes that of doubly robust DiD

estimator of Sant’Anna and Zhao (2020). I compute this estimator using both not-yet-treated units and

never-treated units as the control group.

In addition, Freyaldenhoven et al. (2019) argue that DiD estimators may suffer from an endogeneity

problem owing to unobserved heterogeneity that correlates with both treatment and the outcomes of

interest. I additionally compute the Freyaldenhoven et al. (2019) proxy-based estimator that addresses

this problem. This estimator requires proxies for unobserved heterogeneity. As proxies, I use the controls

wzt. I additionally control for these variables in computing the IW estimator. The qualitative conclusions

from my analysis are robust to estimator.

The TWFE, IW, and IV estimators permit the inclusion of time-varying covariates wzt. I include as

covariates (i) the Oxford Covid-19 Government Response Tracker (OxCGRT) measure of the stringency

of local COVID-19 policy (Hallas et al. 2020), (ii) the number of new COVID-19 cases per capita in the

ZIP’s county, and (iii) the number of new COVID-19 cases per capita interacted with the Democrat vote

share in the 2020 US presidential election. Additionally, I use data on COVID-19 cases by county from

the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns

Hopkins University (Dong et al. 2020) and county-level data on the results of the 2020 US presidential

5I focus on caps of 15% or lower because 15% is the most common level of caps. I exclude ZIPs with caps greater than
15% from the analysis.

6This variant is

yfzt = ψfz + ϕft +

τ̄∑
τ=−τ̄

δfτxz,t−τ + δ+f
∑
τ>τ̄

xz,t−τ + δ−f
∑

τ<−τ̄

xz,t−τ + w′
ztβ + ϵfzt,

The treatment variable xz,t−τ equals one if and only if a commission cap was first imposed in ZIP z in month t− τ . I set
τ̄ = 7 in practice.
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election from MIT Election Data and Science Lab (2018). In addition, I use each of these variables as

proxies for unobserved heterogeneity in computing the Freyaldenhoven et al. (2019) IV estimator. I do

not use covariates in computing the Callaway and Sant’Anna (2021) estimator. Another way in which I

use auxiliary variables in the analysis is in weighting. I weight geographical units by their populations

in computing the TWFE, IW, and Callaway and Sant’Anna (2021) estimators. The implementation

of the Freyaldenhoven et al. (2019) estimator that I used does not allow weights, and thus I instead

emphasized larger geographies by dropping those below a population threshold of 10,000 from the anal-

ysis. To obtain a ZIP3-level version of each county-level COVID-19 and election variable, I compute a

population-weighted average of the variable across ZIPs within the ZIP3, assigning each ZIP the value

of its encompassing county.

Several tables and figures in the article report overall effects as opposed to effects varying in time relative

to the imposition of caps. The manner in which I compute these overall effects differs somewhat by

estimator. The overall effects estimated by TWFE are estimates of δf or δ in equation (10) or (11) as

appropriate. For the other estimators, I aggregate across dynamic effects to obtain overall effects. The

estimands of Callaway and Sant’Anna (2021) are average treatment effects on the treated (ATTs) specific

to treatment cohorts g and calendar times t. I report a weighted average of cohort-time-specific ATTs

across (g, t) pairs such that cohort g has been treated by t, with each cohort weighted by its size. For the

IW estimator and IV estimators, I reported averages across dynamic treatment effects at τ periods since

treatment for τ = 1, . . . , τ̄ , weighting the effect for τ by the number of observations for which treatment

occurred τ periods ago. Note that τ̄ is the number of periods before and after treatment for which I

estimate effects. For the TWFE and IW estimator, I specify τ̄ = 7. For the IV estimator, I specify τ̄ = 5.

I compute standard errors for each estimator that I compute. For the standard TWFE estimator, the

IW estimator, and the IV estimator, I compute classical asymptotic standard errors. For the Callaway

and Sant’Anna (2021) estimator, I compute robust asymptotic standard errors.

O.7.2 Consumer fee effects

I estimate the effects of caps on fees using various difference-in-differences (DiD) methods and the Edison

panel of average consumer fees. The outcome variable yzt in the analysis are log average consumer fees

for one of the leading platforms. Table O.11 provides estimates of commission caps’ effects on the fees

charged by DoorDash (DD), Uber Eats (Uber), and Grubhub (GH). For the TWFE estimator, the table

reports estimates of δf in (10). For the other estimators, the table reports estimates of average dynamic

effects across time periods following the imposition of caps.7 The TWFE results suggest that commission

caps raised fees by 7%–20% across platforms. Moreover, the estimates are positive and between 5.5% and

32% across platform/estimator pairs.8 The non-TWFE estimates are similar to the TWFE estimates but

often less precise. Figure O.5 provides TWFE and IW estimates of dynamic effects on the fees charged

by DoorDash, the largest platform. There is not evidence of pre-trends in places that introduced caps.

Additionally, Figure O.5 suggests that platforms responded to caps with fee hikes almost immediately.

Online Appendix O.7 provides event study plots for other estimators and platforms. These plots similarly

show positive effects and a lack of pre-trends.

The following exhibits provide results for alternative specifications, including those with caps exempting

chain restaurants excluded from the estimation sample (Table O.12), with a continuous treatment variable

(Table O.13), with fees entering in levels (Table O.13), excluding months before July 2020 (in which laws

prohibiting on-premises dining still applied) and before 2021 (Table O.14), with proportional service

7In computing average dynamic effects, I weight the effect for τ periods after cap introduction by the number of obser-
vations for which the unit in question adopted a cap τ periods ago.

8The panel’s inclusion of fewer orders for Uber and Grubhub, which made fewer sales than DoorDash in the sample
period, contributes to fact that the estimates for these two platforms are less precise than those for DoorDash.
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fees and fixed fees as separate outcomes (Table O.15), and in which places with any cap constitute the

treatment group (Table O.16). The estimates are similar to those in the main text, and provide evidence

that commission caps raised fixed fees but not service fee rates.

Table O.10: Fee responses to commission caps

Platform TWFE IW Proxy CS (not yet) CS (never)

DD 0.186 0.249 0.170 0.207 0.215
(0.019) (0.041) (0.095) (0.121) (0.121)

Uber 0.070 0.069 0.209 0.061 0.055
(0.019) (0.040) (0.126) (0.039) (0.041)

GH 0.127 0.127 0.275 0.106 0.110
(0.062) (0.142) (0.148) (0.060) (0.060)

Notes: this table reports estimates of the effects of commission caps on log fees. Each estimator is computed on a ZIP/month
level panel, and each ZIP is weighted by its population. “TWFE” is the two-way fixed effects estimator. “IW” is the
interaction weighted estimator. “Proxy” is the Freyaldenhoven et al. (2019) estimator. “CS” is the Callaway and Sant’Anna
(2021) estimator (with not-yet-treated and never-treated units as controls). I control for COVID-19-related variables (see
main text). I do not include results for Postmates because I lack data on Postmates fees across the sample period. Asymptotic
standard errors appear in parentheses.

Table O.11: Fee responses to commission caps (additional estimators)

Platform TWFE IW Proxy CS (not yet) CS (never)

DD 0.186 0.249 0.170 0.207 0.215
(0.019) (0.041) (0.095) (0.121) (0.121)

Uber 0.070 0.069 0.209 0.061 0.055
(0.019) (0.040) (0.126) (0.039) (0.041)

GH 0.127 0.127 0.275 0.106 0.110
(0.062) (0.142) (0.148) (0.060) (0.060)

Notes: this table reports estimates of the effects of commission caps on log fees. Each estimator is computed on a ZIP/month
level panel, and each ZIP is weighted by its population. “TWFE” is the two-way fixed effects estimator. “IW” is the
interaction weighted estimator. “Proxy” is the Freyaldenhoven et al. (2019) estimator. “CS” is the Callaway and Sant’Anna
(2021) estimator (with not-yet-treated and never-treated units as controls). I control for COVID-19-related variables (see
main text). I do not include results for Postmates because I lack data on Postmates fees across the sample period. Classical
asymptotic standard errors appear in parentheses.

Table O.12: Fee responses to commission caps, excluding caps that exempt chains

Platform TWFE IW CS (not yet) CS (never)

DD 0.175 0.336 0.272 0.274
(0.022) (0.048) (0.165) (0.165)

Uber 0.092 0.067 0.042 0.033
(0.023) (0.050) (0.053) (0.054)

GH 0.104 0.188 0.137 0.145
(0.079) (0.190) (0.077) (0.077)

Notes: this table reports results of the difference-in-differences analysis of commission caps’ effects on platform consumer
fees when areas that ever enacted a cap that exempted chain restaurants are excluded from the estimation sample.
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Table O.13: Fee responses to commission caps, alternative treatment and outcome variables

Specification DD Uber GH

Level fee and discrete treatment 0.67 0.23 0.58
(0.10) (0.12) (0.11)

Level fee and continuous treatment (rate) -4.44 -1.64 -3.70
(0.67) (0.81) (0.74)

Log fee and continuous treatment (rate) -1.25 -0.48 -0.80
(0.13) (0.13) (0.41)

Log fee and continuous treatment (log rate) -0.27 -0.10 -0.17
(0.03) (0.03) (0.09)

Notes: the “continuous treatment” rows of this table report results of DiD analyses in which the treatment indicator xzt is
by a variable that is

1. equal to the level of the commission cap in place in ZIP z in month t, if a cap is in place, and

2. equal to 0.30, otherwise,

or the log of this continuous treatment variable. The table also reports results for specifications in which platform fees enter
in levels rather than in logs. The estimation sample includes ZIPs with commission caps greater than 0.15.

Table O.14: Fee responses to commission caps (subsamples for later time periods)

(a) July 2020 to May 2021

Platform TWFE IW CS (not yet) CS (never)

DD 0.169 0.336 0.234 0.235
(0.025) (0.050) (0.166) (0.166)

Uber 0.109 0.053 0.132 0.130
(0.021) (0.041) (0.042) (0.042)

GH 0.091 -0.020 0.086 0.087
(0.049) (0.112) (0.058) (0.058)

(b) January 2021 to May 2021

Platform TWFE IW CS (not yet) CS (never)

DD 0.166 0.078 0.043 0.043
(0.064) (0.031) (0.078) (0.078)

Uber 0.026 0.001 0.254 0.254
(0.070) (0.034) (0.158) (0.158)

GH 0.068 0.010 -0.017 -0.017
(0.112) (0.075) (0.171) (0.171)

Notes: This table reports results of the DiD analyses of platform fees applied to data from subperiods of the sample period.
See the notes of Table O.11 for additional details.

Table O.15: Responses of service fees and fixed fees to commission caps

Outcome DD Uber GH

Service fee rate -0.041 0.068 -0.018
(0.019) (0.030) (0.044)

Log fixed fee 0.084 0.173 0.049
(0.035) (0.033) (0.071)

Notes: the table reports TWFE estimates of the effects of commission caps on platforms’ service fee rates and log fixed fees.
I compute the service fee rate in a ZIP for a particular month by dividing the ZIP’s average service fee amount in dollars
by the average basket subtotal before fees, tips, and tax. I compute the average fixed fee by subtracting the average service
fee from the average total fee. See the notes of Table O.11 for additional details.
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Figure O.2: Platforms’ average consumer fees and commissions in regions with and without a commission
cap (May 2021)
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(a) Average prices per transaction: no cap
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(b) Average prices per transaction: cap

Notes: this figure describes the average per-order restaurant commission and the average per-order consumer fee charged by
platforms. The average restaurant commissions are obtained by multiplying estimated average order subtotals at the ZIP
level in the Edison transactions data by (i) 0.30 if no commission cap is in effect and (ii) the level of the active commission
cap if a commission cap is in effect, and by then averaging across ZIPs, using the number of orders placed in each ZIP as
weights. The figure plots average commissions and average consumer fees separately for regions with and without active
commission caps in May 2021.

Figure O.3: Market shares: validation of Numera-
tor panel
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Note: This plot compares market shares (CBSA level)
from the Numerator data to market shares based on
payment card transactions (Second Measure data, March
2021). The Second Measure market shares are available
here: https://dfdnews.com/2021/04/15/which-company-is-
winning-the-restaurant-food-delivery-war/. The solid line
is the 45◦ line.

Figure O.4: Market shares: validation of Edison
panel
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Note: This plot compares market shares (CBSA level) from
the Edison data to market shares based on payment card
transactions (Second Measure data, March 2021). See the
notes for Figure O.3.
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Figure O.5: Effects of commission caps on DoorDash fees
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(b) IW (Sun and Abraham 2021)
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Notes: this figure reports estimates of the effects of commission caps on DoorDash’s log average fees, The figure reports
estimates from both the standard two-way fixed effects (TWFE) estimator and from the interaction weighted (IW) estimator.
The dots indicate point estimates and the bars around each point indicate 95% confidence intervals.

Table O.16: Fee responses to commission caps, alternative treatment/control groups

Platform TWFE IW IV CS (not yet) CS (never)

DD 0.129 0.250 0.061 0.206 0.220
(0.015) (0.042) (0.084) (0.084) (0.084)

Uber 0.037 -0.050 -0.064 -0.071 -0.051
(0.014) (0.037) (0.095) (0.040) (0.037)

GH 0.171 0.111 0.135 0.045 0.042
(0.054) (0.203) (0.139) (0.064) (0.064)

Notes: This table is an analogue of Table O.11 with the exception that the treatment group in the underlying analysis
includes ZIPs with any cap (including those above 15%) and the control group includes all remaining ZIPs. See the notes
of Table O.11 for additional details.
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Figure O.6: Dynamic effects of commission caps on consumer fees
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(a) DoorDash, TWFE
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(b) DoorDash, IW
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(c) DoorDash, IV
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(d) Uber Eats, TWFE
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(e) Uber Eats, IW
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(f) Uber Eats, IV

Month after treatment

E
ffe

ct
 o

f c
ap

−7 −5 −3 −1 0 1 2 3 4 5 6 7

−
0.

6
−

0.
2

0.
2

0.
6

(g) Grubhub, TWFE
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(h) Grubhub, IW
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(i) Grubhub, IV

Notes: this figure plots estimates of dynamic effects of commission caps on platforms’ consumer fees. These estimates were computed on the Edison ZIP/platform/month-level panel
using three estimators described in the main text. The dots indicate point estimates and the bars around each point indicate 95% confidence intervals.

21



O.7.3 Ordering effects

The effects of commission caps on restaurant profits depend on the extent to which ordering with plat-

forms and ordering directly from a restaurant are substitutable from the consumer’s perspective. If, for

example, these channels were highly substitutable, consumers would switch from platform ordering to

restaurant ordering due to platform fee hikes, benefitting restaurants given that they do not pay com-

mission on direct sales. To assess the substitutability of direct and platform ordering, I apply the DiD

methods deployed in Section O.7.2 to a panel of ZIP3/month-level estimates of order volumes derived

from the Numerator panel. I use the Numerator data here as they characterize both platform and direct

ordering. Given that the Edison data analyzed in Section O.7.2 contain data on platform sales, I check

the robustness of my estimates using those data, repeating the analysis of platform fees described in

Section O.7.2 but with log orders taking the place of log fees as the outcome.

Figure O.7 reports results of the analysis for log platform sales and log direct sales as outcomes and Fig-

ure O.8 plots dynamic effects from the IW estimator.9 Across estimators and datasets, every estimated

effect on platform orders except one is between -0.10 and -0.05 (a reduction of 5–11%). Additionally, the

estimated effects on direct orders are all positive and range 0–5%. The estimated positive response of

direct-from-restaurant spending to caps suggests that direct ordering and platform ordering are reason-

ably substitutable. In fact, I fail to reject the hypothesis that caps affected overall restaurant spending

(before fees, tips, and taxes). Figure O.12 provides results for DiD analysis of caps’ effects on overall

spending — the estimated effects range from -0.012 to 0.020, and none of the estimates are significant

at the 5% level.

Figure O.7: Effects of commission caps on restaurant sales

(a) Platform orders (Numerator)
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(b) Platform orders (Edison)
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(c) Direct orders (Numerator)
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Notes: this figure reports DiD estimates of the effects of commission caps of 15% or less on the log number of restaurant
orders placed (i) on delivery platforms and (ii) directly at restaurants. See the notes for Table O.11 for an explanation of
each estimator. The dots indicate point estimates and the bars around each point indicate 95% confidence intervals.

9There are not significant pre-trends, although some pre-trends in direct ordering systematically differ from zero. This
may reflect unobserved heterogeneity affecting both cap adoption and order volumes. I assess this endogeneity concern by
comparing the IW estimates to those from the estimator of Freyaldenhoven et al. (2019). As shown in Online Appendix
Figure O.9, effects from this estimator are similar to those plotted in Figure O.13b.
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Figure O.8: Effects of commission caps on order volumes (dynamic event study)
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(b) Direct orders
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Notes: this figure plots interaction weighted (IW) estimates of the effects of commission caps on (i) the log number of orders
placed on food delivery platforms and (ii) the log number of orders placed directly from restaurants. The dots indicate
point estimates and the bars around each point indicate 95% confidence intervals.
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Figure O.9: Dynamic effects of commission caps on direct ordering (Numerator panel)
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(b) IW, Sun and Abraham (2021)
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(c) IV, Freyaldenhoven et al. (2019)
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(d) Callaway and Sant’Anna (2021) (never)
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(e) Callaway and Sant’Anna (2021) (not yet)
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Notes: this figure includes plots of estimates of dynamically evolving effects of commission caps on the log of the total
number direct-from-restaurant orders. Each unit in the analysis is a ZIP3, and each time period is a month. The figure
includes estimates obtained from various estimators described in the main text. The dots indicate point estimates and the
bars around each point indicate 95% confidence intervals.
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Figure O.10: Dynamic effects of commission caps on platform ordering (Numerator panel)
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(b) IW, Sun and Abraham (2021)
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(c) IV, Freyaldenhoven et al. (2019)
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(d) Callaway and Sant’Anna (2021) (not yet)
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(e) Callaway and Sant’Anna (2021) (never)

Month after treatment

E
ffe

ct
 o

f c
ap

−7 −5 −3 −1 0 1 2 3 4 5 6 7

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

Notes: this figure includes plots of estimates of dynamic effects of commission caps on the log of the total number of
restaurant orders placed on platforms. Each unit in the analysis is a ZIP3 and each time period is a month. The dots
indicate point estimates and the bars around each point indicate 95% confidence intervals.
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Figure O.11: Dynamic effects of commission caps on platform ordering (Edison panel)
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(b) IW, Sun and Abraham (2021)
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(c) IV, Freyaldenhoven et al. (2019)
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(d) Callaway and Sant’Anna (2021) (not yet)
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(e) Callaway and Sant’Anna (2021) (never)
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Notes: this figure includes plots of estimates of dynamic effects of commission caps on the log of the total number of
restaurant orders placed on platforms. These estimates were computed on the Edison panel. Each unit in the analysis is
a ZIP and each time period is a month. The dots indicate point estimates and the bars around each point indicate 95%
confidence intervals.
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Figure O.12: Effects of commission caps on restaurant sales (basket subtotals)
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Notes: this figure reports difference-in-differences estimates of the effects of commission caps of 15% or less on the log of
aggregate basket subtotals (i.e., order values before fees, tips, and taxes) placed (i) on delivery platforms, (ii) directly at
restaurants, and (iii) across both channels. See the notes for Table O.11 for an explanation of each estimator.

Figure O.13: Effects of commission caps on restaurant sales (January to May 2021)

(a) Platform orders (Numerator)
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Notes: this figure reports DiD estimates of the effects of commission caps of 15% or less on the log number of restaurant
orders placed (i) on delivery platforms and (ii) directly at restaurants. See the notes for Table O.11 for an explanation of
each estimator. Both sets of results come from the Numerator data. The dots indicate point estimates and the bars around
each point indicate 95% confidence intervals.

Figure O.14: Effects of commission caps on restaurant sales (basket subtotals), exclude caps that exempt
chains
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Notes: this table reports results of the analysis described in the notes of Table O.12 but on a sample that excludes areas
that ever had a commission cap that exempted chain restaurants.
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O.7.4 Restaurant platform adoption effects

Commission caps may also affect the intensity of restaurant platform adoption. I assess this possibility

using DiD methods. The monthly data on restaurant listings on platforms facilitates estimation of caps’

dynamic effects on the number of such listings. I estimate these effects on a monthly panel of 3-digit

ZIP code areas (ZIP3), and analyze the number of restaurant listings on platforms both in levels and

per million residents as outcomes.10 A listing here is a restaurant/platform pair — e.g., between one

restaurant listed on DoorDash and another listed on both DoorDash and Uber Eats, there would be

three listings. As in Section O.7.2, I control for COVID-19-related variables and focus on caps of 15% or

lower. Figure O.15a plots estimates of the effects of caps on the total number of restaurant listings per

capita from the IW estimator. Here, the estimates are divided by the population-weighted mean number

of restaurant listings per capita in April 2020 so that the effects may be interpreted as changes relative

to this mean. I find that commission caps raised the number of listings on platforms by between 2.5%

and 14% within six months of taking effect. Although the pre-trends are not statistically distinguishable

from zero at a 95% confidence level, they systematically fall below zero for the periods leading up to cap

implementation. Thus, I compute estimates from the Freyaldenhoven et al. (2019) estimator; the results

are similar to the IW estimates.

Figure O.15: Dynamic effects of commission caps on restaurants’ platform adoption

(a) IW (Sun and Abraham 2021)
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(b) Proxy (Freyaldenhoven et al. 2019)
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Notes: the plot provides estimates of the effects of commission caps on the number of restaurant listings on food delivery
platforms in a three-digit ZIP region (ZIP3) per million residents relative to the population-weighted mean number of
listings in April 2020 (which was 2642). The bars around each point provide 95% pointwise confidence intervals.

The analysis above focuses on the number of restaurant listings on platforms as an outcome. Changes

in this outcome could reflect changes in the extent to which existing restaurants join platforms and also

changes in the set of active restaurants. I additionally conduct analyses that use the share of restaurants

belonging to platforms and the mean number of platforms joined by restaurants as outcome measures.

Although my data record all restaurants on delivery platforms at a monthly frequency, the data on all US

restaurants—including those that do not belong to a platform—are at an annual frequency. I therefore

estimate TWFE regressions at an annual level with the platform adoption measures described above as

outcomes. The time periods here are January 2020 (t0) and January 2021 (t1). The estimating equation

is

yzt = ψz + ϕt︸ ︷︷ ︸
ZIP and month
fixed effects

+ δxzt︸︷︷︸
Treatment

+1{t = t1}w′
ztβ︸ ︷︷ ︸

Controls

+εzt, (11)

10I choose ZIP3s as the units of analysis because ZIP3s are large enough to include both the restaurants that service a
local population and the local population itself, which is important given that the outcome is a per capita measure.
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where ψz are ZIP fixed effects, ϕt are time-period fixed effects, and xzt is an indicator for whether a

commission cap of 15% or lower is active in ZIP z during time period t. Additionally, the vector wzt

includes the number of new and cumulative COVID-19 per capita in January 2021; both of these per

capita case counts interacted with the Democratic vote share in the 2020 US presidential election; and

average value of the Hallas et al. (2020) index of local COVID-19 policy stringency in 2020. The inclusion

of these controls allows places differentially affected by COVID-19 to experience different trends in the

outcomes. The two outcomes yzt are (i) the share of restaurants belonging to at least one platform and

(ii) the average number of platforms that a restaurant in the ZIP joins. The sample includes (i) treated

ZIPs where commission caps of 15% or lower were imposed between January and June 2020 and (ii)

control-group ZIPs that did not have caps by the second period.

Table O.17: Effects of commission caps on restaurants’ platform uptake

(a) All commission caps of 15% or under

Estimator Share online # platforms joined

Diff-in-diff 0.039 0.077
(0.003) (0.007)

Within-metro 0.040 0.124
(0.004) (0.010)

(b) Exclude commission caps that exempt chains

Estimator Share online # platforms joined

Diff-in-diff 0.026 0.044
(0.004) (0.008)

Within-metro 0.031 0.101
(0.005) (0.011)

Notes: “Diff-in-diff” reports OLS estimates of δ in (11) in which the outcomes are either (i) the share of restaurants
that belong to at least one platform or (ii) the average number of platforms joined among restaurants in the ZIP. In the
regression, each ZIP is weighted by its total number of restaurants in January 2020. “Within-metro” reports estimates
from cross-sectional regressions of outcomes (i) and (ii) on an indicator for an active commission cap of 15% or less,
various COVID-19-related controls, and metro area fixed effects. In the regressions, each ZIP is weighted by its number of
restaurants. Whereas Table O.17a reports estimates from a sample that includes all areas that either had no commission
cap or a cap of 15% or under, Table O.17b reports estimates from a sample that excludes areas that ever enacted a cap
that exempted chain restaurants from the sample. Asymptotic standard errors appear in parentheses.

The “Diff-in-diff” row of Table O.17 provides OLS estimates of δ. These results suggest that caps led

to a 3.9 percentage point increase in the share of restaurants belonging to at least one platform and an

increase of 0.077 in the average number of platforms joined. To assess the robustness of the estimates,

I also estimate the effects of caps using cross-sectional variation between municipalities within a metro

area that differ in their commission cap policies. The underlying identification assumption is that the

unobservable propensity for restaurants to join platforms does not differ within a metro area between

places with and without caps, conditional on the controls wzt. I estimate effects of commission caps

using within-metro variation by regressing outcomes on metro fixed effects and on an indicator for a cap.

The “Within-metro” row of Table O.17 provides the results for May 2021. The results are similar to

those from the DiD approach. Table O.18 provides estimates of platform-specific uptake effects. These

estimates suggest a positive effect of caps on restaurants’ probabilities of joining each platform. Table

O.19 provides estimates of the effects of a continuous treatment variable that is defined to be equal to

the level of the active commission cap in places where a cap is in effect and equal to 30% otherwise.

The estimates are consistent with those from specifications with a binary treament: they suggest that

commission reductions raise platform uptake among restaurants.
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Table O.18: Effects of commission caps on restaurants’ platform uptake, platform-specific estimates

Estimator
Share on

DD Uber GH PM

Diff-in-diff 0.027 0.028 0.006 0.016
(0.004) (0.003) (0.002) (0.002)

Within-metro 0.010 0.040 0.035 0.038
(0.004) (0.003) (0.003) (0.002)

Notes: “Diff-in-diff” reports OLS estimates of δ in (11) in which the outcomes are the shares of restaurants in the ZIP that
belong to the food delivery platform indicated by the columns. In the regression, each ZIP is weighted by its total number
of restaurants in January 2020. “Within-metro” reports estimates from cross-sectional regressions of the same outcomes on
an indicator for an active commission cap of 15% or less, various COVID-19-related controls, and metro area fixed effects.
In the regression, each ZIP is weighted by its number of restaurants. Asymptotic standard errors appear in parentheses.

Table O.19: Effects of commission caps on restaurants’ platform uptake, continuous treatment

Estimator Share online # platforms joined

Diff-in-diff -0.128 -0.119
(0.020) (0.044)

Within-metro -0.275 -0.856
(0.027) (0.064)

Notes: see the notes for Table O.17. The treatment variable xzt used in the regressions whose results are displayed above
is equal to the level of ZIP z’s commission cap in effect at time period t if a commission cap was in effect and equal to 0.30
otherwise. The sample includes ZIPs with commission caps exceeding 15%.

Table O.20: Effects of commission caps on platform restaurant listing counts (absolute listing counts)

Outcome TWFE IW Proxy CS (not yet) CS (never)

Total listings 511.9 291.3 429.4 411.4 414.1
(22.9) (38.4) (68.7) (138.1) (138.8)

DD listings 63.1 22.7 42.5 39.4 38.4
(4.7) (14.7) (15.1) (22.6) (22.4)

Uber listings 166.5 85.8 152.2 148.7 150.2
(7.7) (10.9) (23.2) (46.5) (46.8)

GH listings 139.2 83.8 117.7 115.3 116.7
(6.8) (9.7) (20.3) (37.7) (38.0)

PM listings 143.1 99.0 117.1 107.9 108.9
(5.5) (10.1) (16.8) (39.4) (39.5)

Notes: the table provides estimates of the effect of a 15% commission cap on the number of restaurant listings on food
delivery platforms in a three-digit ZIP region (ZIP3). The mean value of the dependent variable across ZIP3s in April 2020
(weighting for population) were 2757 (total), 1037 (DoorDash), 734 (Uber Eats), 613 (Grubhub), and 373 (Postmates).
The “TWFE” column provides results from a two-way fixed effects regression of the outcome variable on (i) ZIP3 fixed
effects, (ii) month fixed effects, and (iii) an indicator for an active 15% or lower commission cap in the ZIP3. The “CS (not
yet)” column provides estimates of the average treatment effect on the treated (ATT) across time periods and treatment
cohorts from the Callaway and Sant’Anna (2021) estimator when not-yet-treated units constitute the control group. The
“CS (never)” reports estimates of the ATT from the Callaway and Sant’Anna (2021) estimator when never-treated units
constitute the control group. Asymptotic standard errors appear in parentheses.
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Table O.21: Effects of commission caps on platform restaurant listing counts (relative effects)

Outcome TWFE IW Proxy CS (not yet) CS (never)

Total listings 0.114 0.088 0.100 0.098 0.099
(0.005) (0.009) (0.012) (0.023) (0.023)

DD listings 0.023 0.009 0.015 0.009 0.008
(0.003) (0.011) (0.010) (0.013) (0.013)

Uber listings 0.156 0.106 0.146 0.151 0.153
(0.006) (0.012) (0.017) (0.029) (0.029)

GH listings 0.153 0.120 0.129 0.133 0.135
(0.006) (0.012) (0.016) (0.026) (0.027)

PM listings 0.253 0.250 0.228 0.215 0.217
(0.009) (0.021) (0.026) (0.055) (0.055)

Notes: the table provides estimates of the effect of a 15% commission cap on the number of restaurant listings on food
delivery platforms in a three-digit ZIP region (ZIP3) per million residents relative to the population-weighted mean value of
this quantity in April 2020. The mean value of the dependent variable across ZIP3s in April 2020 (weighting for population)
were 2642 (total), 1056 (DoorDash), 668 (Uber Eats), 587 (Grubhub), and 332 (Postmates). Each column provides results
for a distinct estimator; see the notes for Table O.11 for a description of these estimators. Asymptotic standard errors
appear in parentheses.

Table O.22: Effects of commission caps on platform restaurant listing counts (relative effects), excluding
caps that exempt chains

Outcome TWFE IW Proxy CS (not yet) CS (never)

Total listings 0.127 0.080 0.083 0.093 0.093
(0.005) (0.011) (0.015) (0.019) (0.019)

DD listings 0.022 0.001 -0.009 -0.011 -0.012
(0.004) (0.013) (0.012) (0.011) (0.011)

Uber listings 0.167 0.086 0.133 0.151 0.153
(0.008) (0.014) (0.021) (0.026) (0.026)

GH listings 0.171 0.106 0.113 0.134 0.135
(0.007) (0.013) (0.020) (0.024) (0.024)

PM listings 0.299 0.269 0.224 0.233 0.235
(0.010) (0.025) (0.031) (0.052) (0.053)

Notes: this table reports results of the analysis described in the notes of Table O.21 but with areas that ever had commission
caps that exempted chains excluded from the estimation sample.

Figure O.16: Dynamic effects of commission caps on restaurants’ platform adoption (Freyaldenhoven
et al. 2019 proxy estimator)
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Notes: the plot provides estimates of the effects of commission caps on the number of restaurant listings on food delivery
platforms in a three-digit ZIP region (ZIP3) per million residents relative to the population-weighted mean number of
listings in April 2020 (which was 2642). The bars around each point provide 95% pointwise confidence intervals.
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Figure O.17: Dynamic effects of commission caps on platform restaurant listing counts (disaggregated
by platform)

(a) DoorDash

Month after treatment

E
ffe

ct
 o

f c
ap

−3 −2 −1 0 1 2 3

−
20

0
20

40
60

(b) Uber Eats
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(c) Grubhub
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(d) Postmates

Month after treatment

E
ffe

ct
 o

f c
ap

−3 −2 −1 0 1 2 3

−
20

−
10

0
5

10

Notes: the plot provides estimates of the effect of a 15% commission cap on the number of restaurant listings on food delivery
platforms in a three-digit ZIP region (ZIP3) per million residents. The mean value of the dependent variable across ZIP3s
in April 2020 (weighting for population) were 2642 (total), 1056 (DoorDash), 668 (Uber Eats), 587 (Grubhub), and 332
(Postmates). The estimates derive from the Callaway and Sant’Anna (2021) estimator with never-treated units constituting
the control group. The bars around each point provide 95% pointwise confidence intervals.
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Figure O.18: Dynamic effects of commission caps on platform restaurant listing counts (alternative
estimators)
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(c) IV
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(d) Callaway and Sant’Anna (2021) (not yet)
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Notes: the plot provides estimates of the effect of a 15% commission cap on the number of restaurant listings on food delivery
platforms in a three-digit ZIP region (ZIP3) per million residents, scaled by the mean value of the dependent variable across
ZIP3s in April 2020 (2642). The estimates derive from (O.18a) a two-way fixed effects estimator; (O.18b) the interaction-
weighted estimator of Sun and Abraham (2021); (O.18c) the instrumental-variables-based estimator of Freyaldenhoven
et al. (2019), which uses new COVID-19 cases per capita, stringency of local COVID-19 policy, and the interaction of new
COVID-19 cases per capita and the Democratic vote share in the 2019 election as proxies for unobserved heterogeneity as
well as three leads of the policy change as instruments; and (O.18d) the Callaway and Sant’Anna (2021) estimator with
never-treated units constituting the control group. The bars around each point provide 95% pointwise confidence intervals.
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O.8 Equilibrium uniqueness

Multiplicity of equilibria is a well-known concern in the two-sided markets literature. This problem arises

when platform adoption is driven by network externalities: i.e., participation on each side is contingent on

participation on the other. In the extreme case, a two-sided market may support both (i) a no-adoption

equilibrium in which both buyers and sellers refrain from joining due to the lack of adoption on the

other side and (ii) a full-adoption wherein each side’s participation is driven by the high participation

on the other. To address this coordination problem, Weyl (2010) introduced the concept of insulating

tariffs, which are platform fees that condition on participation on the opposite side of the market and

that ensure the platform can implement its preferred adoption level.

Although my model does not feature insulating tariffs, it does not suffer from the multiplicity concern

raised above. This is because it does not feature a consumer adoption stage. Consumers are assumed

to have access to all platforms at the time of ordering without having made any previous platform

membership decision. Thus, restaurants deciding whether to join a platform face no uncertainty about

the availability of consumers.

To illustrate the absence of multiplicity more concretely, I analyze a stylized version of the model.

A monopolist platform sets a per-transaction fee c to consumers and a per-transaction commission r

to restaurants. I assume for simplicity of exposition that restaurants do not set prices, and that the

platform’s commission charge is a fixed amount rather than a share of the price. I assume that sales

on the platform equal S(c, J), where J is the share of restaurants that have joined the platform. A

restaurant joins the platform when its profits from doing so are non-negative. A restaurant’s profits from

joining the platform are

Π(J) = (b− r)
S(c, J)

J
−K,

where b is the restaurant’s benefit from a platform sale, assumed to be fixed across restaurants, and K

is the fixed cost of platform adoption. The fraction S(c, J)/J reflects that restaurants belonging to the

platform evenly share sales made on the platform. Assume now that S(c, J)/J is a strictly decreasing

function: this means that each restaurant’s sales on the platform fall when more restaurants join the

platform. This implies that Π(J) is decreasing in J . Also assume for ease of exposition that S(c, J)/J is

continuous in J . There are three cases to analyze. First, suppose that Π(0) < 0. In this case, Π(J) < 0

for all J ≥ 0. Hence, there is no level of platform adoption by restaurants at which restaurants are

profitable, and consequently no restaurants join the platform. Now suppose that Π(1) ≥ 0. Then, for

any adoption level J < 1, it is profitable for another restaurant to join the platform as Π(J) > Π(1) ≥ 0.

This means that all restaurants join the platform. Last, by virtue of the fact that S(c, J)/J is continuous

in J , there is a case in which Π(J∗) = 0 for some J∗ ∈ (0, 1). In this case, a share J∗ of restaurants join

the platform. Indeed, if fewer restaurants join, it is profitable for those restaurants that did not join to

adopt the platform. If more restaurants join, then the profits of restaurants using the platform would be

negative. Both conclusions stem from the fact that Π is a decreasing function. Thus, in each case, there

is a unique level of restaurant platform adoption. In addition, there is a unique level of sales associated

with this unique level of restaurant platform adoption; it is given by the demand function S(c, J).

Although this stylized model abstracts from features of the full model (e.g., price setting), it shares the

same structure in key respects. In particular, it shows that removing consumer adoption frictions and

incorporating business stealing eliminates the strategic uncertainty that typically generates multiplicity.

As such, equilibrium uniqueness is a reasonable assumption in the full model.
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O.9 Restaurant pricing model

I consider two distinct models of restaurant pricing. In the first, restaurant prices solve

p∗j = argmax
pj

∑
f∈Gj

[(1− ϑrf )pjf − κjf ]Sjf . (12)

I call this the incomplete response model as the presence of ϑ < 1 limits pricing responses to changes

in commissions. The model does not structurally explain the source of limited pricing responses, which

could owe to menu costs, a lack of sophistication in pricing, or costs in calculating optimal responses to

commissions.

In the second model, restaurant prices solve

p∗j = argmax
pj

∑
f∈Gj

[(1− rf )pjf − κjf ]Sjf +
ϑ′

2

∑
f ̸=0

(pjf − pj0)
2Sjf (13)

I call this the non-parity penalty model, as it imposes a penalty for deviations from price parity (i.e.,

pjf = pj0). These penalties are proportional to the restaurant j’s sales Sjf on platform f , as I hypothesize

that the harms suffered by j from punishment by f and the brand image damage resulting from non-price

parity on f are proportional to the amount of business that the restaurant does on f .

I estimate the pricing friction parameters ϑ from the incomplete response model and ϑ′ from the non-

parity penalty model by GMM. For the incomplete response model, I use the empirical analogue of the

population moment condition described in the main text:

E[κ̃jf (ϑ0)Zj ] = 0, f ̸= 0,

where κ̃jf (ϑ) is the de-meaned marginal cost for restaurant j on platform f as recovered from first-order

conditions for optimal pricing under the parameter ϑ. Similarly, I estimate ϑ′ by minimizing a GMM

objective function computed by (i) inverting first-order conditions for optimal pricing under the non-

parity penalty model to obtain marginal costs κjf (ϑ
′), (ii) demeaning these on a platform-by-platform

basis to obtain κ̃jf (ϑ
′) = κjf (ϑ

′) − κ̄jf (ϑ
′), where κ̄jf (ϑ

′) is the mean of κjf (ϑ
′) over (j, f) pairs, and

(iii) summing over restaurant/platform pairs interactions of κ̃jf (ϑ
′) with an instrument Zj equal to one

if restaurant j was exposed to a commission cap and zero otherwise:

Q(ϑ′) =
∑
j

∑
f∈Gj ,̸=0

κ̃jf (ϑ
′)Zj .

The estimator ϑ̂′ solves Q(ϑ̂′) = 0. I obtain estimates ϑ̂ = 0.638 and ϑ̂′ = 0.416. The latter estimate

implies that the cost to a restaurant of a $2.00 difference between its price on platform f and its direct

price is $0.83 per order on platform f .

I use each pricing model to simulate effects of commission reductions on prices. Holding fixed consumer

fees and restaurant platform adoption decisions as observed in the data, I compute equilibria in restaurant

pricing when all platforms charge 30% commissions and when all platforms charge 15% commissions in

each metro area under each of the two pricing models. In doing so, I use the estimates of ϑ and ϑ′

reported above and the marginal costs estimated under these pricing friction parameter estimates. Table

O.23 reports average price changes when commissions are reduced from 30% to 15%, weighting by sales

under 30% commissions. Whereas the incomplete response model predicts a negligible average change

in direct order prices, the non-parity penalty model predicts a 2.5% reduction in direct order prices.

Both models predict significant average reductions in prices for platform orders, although the non-parity
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Table O.23: Pricing effects of commission reduction under alternative pricing models (%)

Model
Ordering Incomplete Non-parity
channel response penalty

Direct 0.08 -2.46
DoorDash -9.06 -11.59
Uber Eats -9.08 -12.18
Grubhub -9.08 -12.15
Postmates -9.26 -13.35

penalty model predicts larger (11–14%) reductions than the incomplete response model (9–10%). Given

that I do not find evidence of price reductions for direct orders (see Table 16 in Appendix A), I use the

incomplete response model in the article’s counterfactual analysis.

O.10 Bootstrap procedure

The inference procedure uses a multi-stage bootstrap with both parametric and non-parametric compo-

nents.

I begin by drawing B = 100 samples from the estimated asymptotic distribution of the consumer choice

model parameters. To do so, I estimate the variance of the maximum likelihood estimator θ̂cons using the

outer product of gradients, and draw Zb from the resulting estimated distribution of
√
n(θ̂cons − θcons0 ),

where θcons0 is the true choice model parameter vector. Each draw defines θ̂cons,b = θ̂cons + n−1/2Zb as

the bth bootstrapped estimator of θcons. All parameters other than metro/platform fixed effects are

estimated on data from the three largest metro areas, so n refers to the number of consumer observations

in these metros.

For the remaining metros, I estimate the sampling distribution of metro/platform fixed effects non-

parametrically. For each metro and bootstrap draw b, I draw a bootstrap sample (i.e., with replacement

and with the same size as the underlying sample) of consumers and re-estimate fixed effects setting the

other choice model parameters equal to their values in θ̂cons,b. These bootstrapped fixed effect estimates

are incorporated into θ̂cons,b in what follows.

Given each draw θ̂cons,b, I estimateB bootstrapped estimators ϑ̂b of ϑ using the GMM procedure described

in Section 5.2. This involves, for each b ∈ {1, . . . , B}, (i) inverting restaurant pricing first-order conditions
to obtain preliminary marginal costs κ̂(ϑ; θ̂cons,b)jf ; (ii) constructing residualized versions κ̃(ϑ; θ̂cons,b)jf ;

(iii) interacting these residualized marginal costs with the instrument Zj ; and (iv) averaging over a

bootstrap subsample of restaurant/platform pairs (j, f). This yields the GMM objective function (with

argument ϑ) minimized by the bth bootstrapped estimator ϑ̂b.

Next, I estimate bootstrapped restaurant marginal costs κ̂b, under θ̂cons,b and ϑ̂b for each b ∈ {1, . . . , B}.
For each b, I also take a bootstrap draw of restaurants within each ZIP/restaurant type pair. Let

J b denote the bth draw. I proceed to estimate the parameters of the platform adoption model at

{θ̂cons,b,J b, ϑ̂b, κ̂b} for each b, obtaining estimates θ̂adopt,b for each b. I last estimate the platform marginal

costs mcfz at {θ̂b, m̂cb, ϑ̂b, θ̂adopt,b} for each b, yielding estimates m̂cbfm.

The standard errors that I report are standard deviations of parameters (or transformations of param-

eters) across the b-superscripted bootstrap estimates. The 95% confidence interval of ϑ that I report

is the range between the 2.5th percentile and 97.5th percentile of the B bootstrapped estimators ϑ̂b of

ϑ.
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O.11 Choice probabilities

This appendix provides expressions for choice probabilities in the consumer choice model. I begin by

introducing some notation, which is summarized by Table O.24. Let xi denote a sequence including

all relevant consumer-level observables other than ordering outcomes. These observables include the

consumer’s demographic characteristics di and the consumer’s ZIP of residence zi. Additionally, let

Z(zi) denote the set of ZIPs within range of the consumer, and let m(i) denote consumer i’s metro of

residence. Let Ξi = (ζi, η
†
i , ϕ̃iτ ).

I now develop notation for metro-level variables. Let Jm denote the geographical locations and platform

subsets of all restaurants in metro m, let Jτz(G) denote the set of restaurants of type τ in ZIP z that

are located on platform subset G. Next, let wm denote a sequence including all relevant metro-level

observables. These include prices pjf charged by restaurants j in ZIPs z in metro m, fees cfz for ZIPs

z in metro m, waiting times Wfz for ZIPs z in metro m, and Jm. Throughout the section, I assume

that restaurants belonging to the same type, ZIP, and platform subset charge the same prices. This

assumption reflects my focus on symmetric pricing equilibria, and it motivates my use of the notation

pτzG = {pfτzG}f∈G to denote the prices of a type-τ restaurant in ZIP z that belongs to platform subset

G. Let θ denote the model parameters, which I often suppress in the notation.

Table O.24: Summary of notation

Level Notation Meaning

Consumer

di Consumer i’s demographics (age, marital status, income)
zi Consumer i’s ZIP
xi Combined consumer-level data: zi, di
Ξi Unobserved heterogeneity: ζi, η

†
i

Metro

pm All prices pfzG for ZIPs in metro m
cm All fees cfz for ZIPs in metro m
Wm All waiting times Wfz for ZIPs in metro m
Jm Locations & platform subsets of restaurants in metro m
wm Combined metro-level data: pm, cm,Wm,Jm

In my model, consumers simultaneously choose a restaurant and a platform. If the consumer orders from

a restaurant j of type τ in ZIP z with platform subset G, then the consumer will select the platform f

that maximizes ψif − αipfτzG among platforms f ∈ G. In practice, I smooth consumers’ probabilities

of selecting platforms for a particular restaurant when computing choice probabilities. This smoothing

operation involves the functions

V (G, τ, z, xi, wm(i),Ξi) = σε log

∑
f∈G

e(ψif−αipfτzG)/σε


and

µi(f | G, τ, z, xi, wm(i),Ξi) =
e(ψif−αipfτzG)/σε∑

f ′∈G e
(ψif ′−αipfτzG)/σε

.

Note that V provides a smoothed maximum of ψif − αipfτzG among platforms f to which a restaurant

j of type τ on platform subset G in ZIP z belongs, whereas µ is a smoothed indicator for f maximizing
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ψif − αipfτzG among these platforms. Indeed,

lim
σε↓0

V (G, τ, z, xi,Ξi) = max
f∈Gj

[ψif − αipfτzG ]

lim
σε↓0

µi(f | G, τ, z, xi,Ξi) = 1

{
f = arg max

f ′∈Gj

[
ψif ′ − αipf ′τzG

]}
The parameter σε controls the extent of smoothing. I smooth because it facilitates the computation of

derivatives of market shares. I compute these derivatives by integrating over analytical derivatives of

smoothed consumer choice probabilities; without smoothing, I would need to numerically differentiate

the integrals over indicators that define market shares, which is computationally difficult.

The consumer’s probability of choosing a restaurant of type τ in ZIP z ∈ Z(zi) with platform subset

G conditional on their observed characteristics xi, the characteristics of their market wm(i), and their

unobserved tastes Ξi is

λ(G, τ, z | xi, wm(i),Ξi) = Pr

(
(G, τ, z) = arg max

G′,τ ′z′

{
max

j∈Jτ′,z′ (G′)

[
V (G, τ, z, xi, wm(i),Ξi) + νijt

]}
| zi, xi, wm(i),Ξi

)
=

|Jτz(G)|eV (G,τ,z,xi,wm(i),Ξi)∑
G′,τ ′

∑
z′∈Z(zi)

|Jτ ′z′(G′)|eV (G′,τ,z′,xi,wm(i),Ξi)
.

For z /∈ Z(zi), we have λ(G, τ, z | xi, wm(i),Ξi) = 0. That is, the consumer never orders from a restaurant

outside of the five mile delivery radius.

I now provide an expression for a consumer’s probability of ordering from any inside restaurant, i.e.,

from any restaurant j ̸= 0. The inclusive value of inside restaurants is equal to

V̄ (xi, wm(i),Ξi) = ηi + log

∑
G,τ

∑
z∈Z(zi)

|Jτz(G)|eV (G,τ,z,xi,wm(i),Ξi)

 .

Furthermore, consumer i’s probability of choosing a restaurant j ̸= 0 conditional on (xi, wm(i),Ξi) is

Λ(xi, wm(i),Ξi) =
eV̄ (xi,wm(i),Ξi)

1 + eV̄ (xi,wm(i),Ξi)

It follows that the probability with which the consumer places an order on platform f conditional on xi,

wm(i), and Ξi is

ℓ(f | xi, wm(i),Ξi; θ) =
∑

G:f∈G

∑
τ

∑
z∈Z

λ(G, τ, z|xi, wm(i),Ξi)µ(f | G, τ, z, xi, wm(i),Ξi).

The probability that the consumer does not order from a restaurant conditional on {xi, wm(i),Ξi} is

ℓ0(xi, wm(i),Ξi; θ) = 1−Λ(xi, wm(i),Ξi).
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O.12 Restaurant sales

The sales on platform f of a restaurant j of type τj in ZIP zj that belongs to the platform subset G
are

Sjf (Gj , wm) =
∑

zi∈Z(j)

Mz

∫
Λ(zi, di, wm,Ξi)×µ(f | Gj , τj , zj , zi, di, wm,Ξi)×

eV (Gj ,τj ,zj ,zi,di,wm,Ξi)∑
G,τ

∑
z′∈Z(zi)

∑
k∈Jτz′ (G)

eV (G,τ,z′,zi,di,wm,Ξi)
dPz(di,Ξi).

(14)

The quantity Mz in (14) is the number of potential orders in ZIP z (that is, the number in consumers

in the ZIP times the number T of potential orders per consumer), and dPz is the joint distribution

of consumer demographics di and unobserved heterogeneity Ξi within z. Note that (14) is the sum of

restaurant j’s sales on f across ZIPs zi, and the sales within each ZIP zi equal the product of (i) the

consumer’s probability of ordering from any restaurant Λ, (ii) the consumer’s probability of ordering

from f upon selecting a restaurant in zj on platform subset Gj , and (iii) the consumer’s probability of

selecting a restaurant in zj on platform subset Gj . Note also that Sjf (Gj , wm) depends on restaurant j’s

prices through wm, which includes all restaurant prices in metro m.

O.13 Computation of equilibria in platform adoption

I now turn to the determination of equilibria in restaurants’ platform adoption game. This algorithm

involves a learning rate parameter r ∈ (0, 1] and a tolerance parameter δ > 0. The algorithm for finding

equilibria in restaurants’ platform adoption choices in a market m is given by:

1. Set Pm to an initial sequence of choice probabilities. Except when checking for the non-uniqueness

of equilibria, I set Pm = P̂m, where P̂m = {P̂τz(G)}τ,z,G and P̂τz(G) is the share of restaurants of

type τ in ZIP z that locate on platform subset G in the data.

2. Compute

P̃τz(G) = r Pr

(
G = argmax

G′

[
Πτz(G′, Pm) + ωj(G′)

])
+ (1− r)Pz(G)

for all z and G, and collect these probabilities in P̃m = {P̃τz(G)}τ,z,G . The fixed-point condition

(9) involves probabilities for each restaurant j, but restaurants of the same type and ZIP have

common probabilities of adopting platform subsets given that restaurants are homogeneous within

a ZIP/type pair. There is thus is no loss in including only one probability for each type/ZIP

pair. The constancy of Πj among restaurants j sharing a ZIP/type z/τ rationalizes the use of the

notation Πτz for restaurants within this ZIP/type cell.

3. Compute D =
√∑

τ,z,G(P̃τz(G)− Pτz(G))2. If D < δ, terminate the algorithm and accept P̃z as

an equilibrium in restaurants’ platform subset choice game. Otherwise, set Pm = P̃m and return

to step 2.

In practice, computing

Pr

(
G = argmax

G′

[
Πτz(G′, Pm) + ωj(G′)

])
(15)

is computationally burdensome because it involves integrating each restaurant’s profits over the distri-

bution of rival restaurants’ choices for each platform subset G in the restaurant’s choice set. Although

the symmetry of restaurants within a type/ZIP pair makes it necessary only to compute these integrals

for each type/ZIP pair rather than compute them separately for each restaurant, the computational

burden is still large given that (i) there are many ZIPs in each market and (ii) computing equilibrium in

platform adoption involves iterating on (15) many times. I therefore use an approximation to compute
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(15). Recall that

Πj(G, Pm) = E

∑
f∈G

[(1− rfz))p
∗
jf (G,Jm,−j)− κj ]Sjf (G,Jm,−j , p

∗) | Pm


︸ ︷︷ ︸

:=Π̄j(G,Pm)

−Kτ(j)m(G). (16)

The expectation Π̄j over rival restaurants’ platform adoption decisions Jm,−j is the part of (16) that

is difficult to compute. Computing the expectation exactly is prohibitive given that the number of

possible configurations of rival restaurants across platform subsets is immense under moderate counts

of restaurants in a ZIP.11 Simulation is a standard way to approximate expectations, but simulation

is also somewhat computationally burdensome because it requires drawing multiple replicates of rival

restaurant decisions Jm,−j for each G selected by the restaurant in question, and subsequently computing

the integrand of the expectation in (16) for each of these draws. An alternative approximation of the

expectation in (15) is the value of the integrand when the number of restaurants in z that select G is

equal to the overall number of type τ restaurants in z times Pτz(G). Note that the numbers of rival

restaurants that choose each platform subset as computed in this fashion need not be integers. The

expression (14) for sales made on platform f by a restaurant j located on platform subset Gj , however,
may be computed even when the number of type τ restaurants on a platform subset G in ZIP z is not an

integer. I use (14) to compute the Sjf term appearing in the integrand of the expectation in (16) under

this alternative approximation.

The alternative approximation of the right-hand side of (15) introduces little error. To evaluate the

error, I compute expected restaurant profits for each platform subset in five randomly selected pairs of

restaurant types and ZIPs (e.g., independent restaurants in ZIP 02138) in each metro using both the

simulation approximation (with five simulation draws) and the alternative approximation. I then regress

expected profits from the simulation approximation on those from the alternative approximation. The

R2 from the regression is 1.000 up to three decimal places, and the estimated slope coefficient is 1.001.

The profits and equilibrium choice probabilities as computed with and without using the approximation

procedure are so close because variability in the realized distribution of restaurants across platform

subsets is small when, as is the case, the number of restaurants in the market is large. This limits the

scope for the mean of profits evaluated at rival restaurants’ decisions to diverge from profits evaluated

at the mean of rival restaurants’ decisions.

O.14 Cross-sectional variation in gaps between privately and socially optimal fees

Table O.25 reports results from regressions of (i) the gap between the privately and socially optimal

consumer fees cprfm − csofm for platform f in county m and (ii) the gap between the privately and so-

cially optimal restaurant commissions rprfm− rsofm on platform f in county m on various platform/county

characteristics relevant to distortions in platform fees. These characteristics, which are explained in

detail in the table notes, are suggested by the illustrative model of Section 2, and vary between the two

regressions.

11Consider a setting with J restaurants in a ZIP, each of which chooses between G platform subsets. The number of
possible configurations of restaurant counts across platform subsets is(

J +G− 1

G− 1

)
.

When J = 100 and, as in my setting, G = 16,(
J +G− 1

G− 1

)
=

(
115

15

)
> 2× 1018.
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Consumer fees. The illustrative model suggested that consumer-side market power, which is inversely

related to the absolute value of the semi-elasticity of a platform’s sales with respect to its consumer

fee, tends to make privately optimal consumer fees too high relative to the socially optimal consumer

fees. Thus, I expect this semi-elasticity (as computed under the privately optimal fees) to be negatively

related to the gap between privately and socially optimal consumer fees. I include it as a regressor in

the regression with the consumer fee gap as the outcome.

The model also suggests that a higher rate of diversion from platform ordering to direct ordering, which

I call offline business stealing, tends to make the gap between privately and socially optimal consumer

fees smaller. Thus, I enter this diversion rate as a regressor and expect it to have a negative relationship

to the gap between privately and socially optimal consumer fees.

Next, the illustrative model suggests that socially optimal consumer fees are lower when restaurants

benefit more from platform sales as measured by their gross markups on platforms (i.e., price minus

marginal cost without an adjustment for commissions). This suggests a larger gap between privately and

socially optimal consumer fees when gross markups are larger. I thus expect a negative sign on the gross

markup when included as a regressor.

Last, the illustrative model implies that the privately optimal consumer fee is lower when the platform

earns more restaurant-side revenue from an additional sale. Restaurant-side revenue gains from an

additional sales primarily depend on the privately optimal commission rate, which I include as a regressor.

I expect the consumer fee gap to be smaller when the privately optimal commission rate is higher.

The results in Table O.25a corroborate the hypotheses proposed above. Furthermore, the included

characteristics are powerful in explaining the consumer fee gap: the R2 of the regression is 0.91. To

assess the explanatory power of individual regressors, I compute the R2 from a bivariate regression of

the dependent variable on each regressor (call it R2
k). For each regressor k, I also compute the R2

from a regression of the dependent variable on all regressors except k (call it R2
−k); these measures are

inversely related to the explanatory power of regressor k. Consider the values of this latter measure

R2
−k, all regressors have at least some power in explaining the fee gap. With that said, the gross

restaurant markup and especially the privately optimal commission have greater explanatory power than

the cannibalization and semi-elasticity variables. This suggests that it is primarily variation in the

network-externality-related distortions that drives cross-sectional variation in the magnitude of the total

distortion in consumer fees.

Restaurant commissions. The regression described by Table O.25b characterizes drivers of the gap be-

tween the privately optimal commission rate rprfm and the socially optimal commission rate rsofm across

platform (f)/county (m) pairs. As with the consumer fee gap regression, I choose regressors based on

optimality conditions for the profit-maximizing platform and social planner as derived in the context of

the illustrative model of Section 2.

The first regressor that I specify is the absolute value of the semi-elasticity of the number of restaurants

on platform f in county m with respect to f ’s commission rate in m, as evaluated under the privately

optimal fees. The illustrative model suggests that platforms charge lower commissions when restaurant

adoption is less elastic and hence the platform yields more restaurant-side market power. Therefore, I

expect the gap between privately and socially optimal commission rates to have a negative relationship

with this (negative) semi-elasticity.

In the illustrative model, the social planner sets the level of restaurant platform adoption so that the

variety benefit that an additional restaurant provides to consumers equals the social cost from adding a

restaurant to the platform. When the variety benefit is larger, the social planner sets a lower commission
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rate to attract more restaurants to the platform. Thus, I compute a variable measuring the variety

benefits provided by additional restaurants that I expect to positively relate to the gap between privately

and socially optimal commissions. This variable equals the increase in consumer welfare due to the

additional restaurant platform adoption induced by a one percentage point reduction in commission as

evaluated at the socially optimal consumer fees. In computing consumer welfare changes, I hold fixed

platform fees and restaurant prices. To give the variable a similar scale across markets, I divide it by the

number of orders placed on platform f under the socially optimal fees.

A key element of the cost of adding an additional restaurant to a platform is the restaurant’s fixed cost of

platform adoption. In markets with higher fixed costs of attracting restaurants to platforms, the socially

optimal level of restaurant platform adoption is lower and hence the socially optimal commission rate is

higher. Thus, I expect the fixed cost increase associated with attracting new restaurants to a platform

to be negatively related to the gap between privately and socially optimal commissions. I measure the

fixed costs of attracting restaurants to platform f as the increase in total fixed adoption costs associated

with a one percentage point reduction in a platform f ’s commission rate as evaluated at the socially

optimal fees, scaled by the number of orders placed on platform f under the socially optimal fees.

The benefit to a profit-maximizing platform of attracting an additional restaurant is the revenue it

receives from the resulting additional orders. This revenue depends on the privately optimal consumer

fee, which I include as a regressor. I expect the privately optimal commission rate to be lower when

the privately optimal consumer fee is higher, as the gains from adding restaurants that boost sales are

highest in this case. Thus, the privately optimal commission rate should negatively relate to the gap

between the privately and socially optimal commission rates.

As shown by Table O.25b, the regression results from the align with the hypotheses proposed above. The

“Fixed cost change” has the greatest explanatory power, followed by the “Privately optimal consumer

fee” and “Variety change” variables.

O.15 Additional results

Figure O.19: Heterogeneity in restaurant markups before commissions
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Notes: this figure reports the 5th, 25th, 50th, 75th, and 95th percentiles of restaurant gross markups pjf−κjf—which exclude
platform commissions—for each platform, across restaurants belonging to each platform. The differences are computed at
an equilibrium in which restaurant commissions are fixed at 30% and platform consumer fees maximize platform profits.
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Figure O.20: Welfare effects of marginal commission adjustments
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Notes: this figure provides welfare effects of a uniform one percentage point reduction in DoorDash’s commission rate across
counties. The effects are aggregated across counties and scaled by the number of platform orders under the privately optimal
fees. The “DoorDash: sales effect” quantity is equal to the increase in DoorDash’s profits owing to increased sales, holding
fixed DoorDash’s markups from the baseline equilibria. The “DoorDash: markup effect” quantity is equal to the reduction
in DoorDash’s profits owing to reduced commissions (and hence reduced markups), holding sales fixed at their levels in the
baseline equilibria. The “Rival platforms: sales effect” quantity is equal to the reduction in rival platform profits. The
“Restaurants: direct benefit” quantity is equal to the reduction in commission payments made by restaurants when their
sales, platform adoption decisions, and prices are held fixed at their levels in the baseline equilibrium. The “Restaurants:
competitive effects” quantity is equal to the overall impact of the commission reduction on platform profits, minus the
“Restaurants: direct benefit” quantity defined above. The “Consumer: variety benefits” quantity is equal to the change
in consumer welfare owing to the increased adoption of platforms by restaurants, holding restaurant prices fixed. The
“Consumer: variety benefits” quantity is equal to the overall change in consumer welfare owing to commission reductions
minus the “Consumer: variety benefits” quantity.
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Table O.25: Cross-sectional variation in fee gaps

(a) Consumer fee gap cprfm − csofm ($)

Regressor (k) Estimate SE R2
k (only k) R2

−k (all but k)

Intercept 9.21 (0.28)

Semi-elasticity -13.06 (0.98) 0.32 0.88
Offline business stealing -4.65 (0.39) 0.00 0.89
Gross restaurant markup 0.86 (0.02) 0.02 0.61
Privately optimal commission -0.30 (0.01) 0.54 0.33
R2 0.91

(b) Restaurant commission gap rprfm − rsofm (%)

Regressor (k) Estimate SE R2
k (only k) R2

−k (all but k)

Intercept 23.08 (0.85)

Semi-elasticity -0.63 (0.31) 0.03 0.23
Variety change 13.55 (3.13) 0.05 0.21
Fixed cost change -35.62 (3.78) 0.11 0.08
Privately optimal consumer fee -1.03 (0.22) 0.05 0.20
R2 0.24

Notes: these tables provide results from regressions of the gaps between privately and socially optimal consumer fees and
restaurant commissions on a panel of counties j and platforms f . First, I discuss the regressors in the regression whose
results appear in Table O.25a. The “Offline business stealing” regressor is equal to share of consumers who begin ordering
directly from a restaurant among those who stop ordering from platform f in county m upon an infinitesimal increase in
platform f ’s consumer fee, holding fixed restaurant prices and restaurant platform adoption. This variable is evaluated
under the socially optimal platform fees. The “Semi-elasticity” regressor is the absolute value of the semi-elasticity of orders
on platform f with respect to platform f ’s consumer fee evaluated at the privately optimal fees, holding fixed restaurant
prices and restaurant platform adoption at their levels under the privately optimal fees. This variable in inversely related
to platform market power on the consumer side. The “Gross restaurant markup” regressor is equal to the sales-weighted
average markup pjf −κjf earned by a restaurant j on platform f in county m before platform commissions. The “Privately
optimal commission” regressor, rprfm, is the platform f ’s commission rate in county m in a competitive equilibrium with
profit-maximizing platforms.

I now turn to the regressors included in the regression with the gap between privately and socially optimal restaurant
commissions as the dependent variable, whose results appear in Table O.25b. In this regression, the “Semi-elasticity”
variable is the absolute value of the semi-elasticity of the number of restaurants adopting platform f in county m with
respect to platform f ’s commission rate evaluated at the privately optimal fees. This variable is inversely related to platform
market power on the restaurant side. The “Variety change” regressor is equal to the increase in consumer welfare from the
change in restaurant platform adoption occurring when platform f reduces its commission in county m by one percentage
point as evaluated at the socially optimal fees, holding fixed these fees and restaurant prices and divided by platform f ’s
sales in m to ensure comparability of scale between observations. The “Fixed cost change” regressor is equal to the increase
in the total fixed adoption costs incurred by restaurants due to a one percentage point reduction in commission, divided
by platform f ’s sales in m to ensure comparability of scale between observations. The “Privately optimal consumer fee”
regressor, cprfm, is the platform f ’s consumer fee in county m in a competitive equilibrium with profit-maximizing platforms.

The R2
k quantity reported by both Table O.25a and Table O.25b is the R2 from a regression of the dependent variable on

regressor k alone. It is a measure of k’s power in explaining the dependent variable. The R2
−k quantity is the R2 from a

regression of the dependent variable on all regressors in the full regression except regressor k. Lower values of R2
−k indicate

that k has greater power in explaining the dependent variable conditional on the other regressors.

Each platform/county pair is weighted by platform f ’s share of sales in j under the privately optimal fees. The sample size
is N = 104× 4 = 416 (there are 104 counties and 4 platforms).
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Table O.26: Heterogeneity in sales gains from platform adoption (%)

Metro Mean SD

Atlanta 20.09 3.74
Boston 38.05 9.41
Chicago 20.61 5.37
Dallas 25.18 5.21
Washington 35.25 1.20
Detroit 14.14 2.13
Los Angeles 19.78 2.30
Miami 31.87 6.71
New York 63.91 16.92
Philadelphia 35.81 1.55
Phoenix 22.03 10.97
Riverside 24.09 4.32
Seattle 54.03 8.99
San Francisco 35.75 3.67

Notes: this table reports in percentage terms, for each metro area, the mean relative difference in sales between a restaurant
that has not joined any platform and a restaurant that has joined all four platforms. The difference is computed for each
ZIP/type pair, where the two restaurant types are chains and independents. ZIP/type pairs are weighted by the number
of restaurants that they contain. The table also reports, in the “SD” column, the standard deviation across ZIPs (again
weighted by restaurant counts) of the percentage difference in sales between restaurants joining all platforms and restaurants
joining no platforms. The differences are computed at an equilibrium in which restaurant commissions are fixed at 30% and
platform consumer fees maximize platform profits.

Table O.27: Network elasticities of demand for the New York City metro

Quantity response for...
Platform DD Uber GH PM

DD 0.79 -0.19 -0.19 -0.20
Uber -0.18 0.78 -0.18 -0.20
GH -0.17 -0.18 0.89 -0.18
PM -0.05 -0.05 -0.05 1.32

Notes: this table reports percentage sales responses to a percentage uniform increase in number of restaurants on each
platform in the Chicago CBSA. Two challenges arise in defining these elasticities: (i) numbers of restaurants are subject
to integer constraints, which complicates differentiation, and (ii) restaurants may multi-home, which requires a choice of
how to add new restaurants to platform f . I address these challenges by defining network externalities as the percentage
change in platforms’ sales in a market m in response to the addition of one new chain restaurant and one new independent
restaurant to each ZIP that belongs solely to platform f and to the offline platform. I scale the measure by multiplying by
the number of restaurants that belong to f in m so that the elasticities are interpretable as percentage responses in sales to
a percentage increase in the number of restaurants on platform f . Formally, the elasticity of f ’s sales with respect to the
network on f ′ is

ϵJm,ff ′ =

(
s′fm − sfm

sfm

)
/

(
J ′
f ′m − Jf ′m

Jf ′m

)
,

where Jf ′m and J ′
f ′m are the number of restaurants on f ′ before and after the addition of one restaurant on f ′ to each ZIP,

and s′fm are f ’s sales after the addition of these new restaurants.
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Table O.28: Between-platform diversion ratios for the New York metro

Quantity response for...
Platform No purchase Direct DD Uber GH PM

DD 0.24 0.57 -1.00 0.10 0.08 0.00
Uber 0.24 0.56 0.11 -1.00 0.08 0.00
GH 0.23 0.57 0.10 0.10 -1.00 0.00
PM 0.16 0.47 0.14 0.13 0.10 -1.00

Notes: this table reports the share of consumers who substitute to each platform and to making no purchase among those
who substitute away from a platform f upon a uniform increase in f ’s consumer fee across the New York City metro area.
Formally, the table reports

dff ′ =

(
∂sfm(cf ′m + h)

∂h

∣∣∣∣
h=0

)
/

(
− ∂sf ′m(cf ′m + h)

∂h

∣∣∣∣
h=0

)
where cf ′m is a vector of the consumer fees charged by f ′ across all ZIPs within m; sfm are alternative f ’s sales in m. Each
column provides diversion ratios dff ′ for a particular alternative f whereas each row provides diversion ratios dff ′ for a
particular platform f whose consumer fees increase across m.

Table O.29: Socially and privately optimal platform markups

Platform
Privately Socially Difference
optimal optimal

DD 3.64 (0.42) -1.73 (0.99) 5.37 (1.10)

Uber 3.98 (0.40) -1.11 (0.91) 5.08 (0.75)

GH 3.89 (0.50) -1.09 (1.04) 4.99 (0.87)

PM 3.69 (1.00) -1.10 (1.70) 4.80 (2.13)

Total 3.77 (0.48) -1.50 (1.03) 5.27 (1.07)

Notes: this table displays the mean platform aggregate markups across counties. Each county is weighted by its sales on
the indicated platform under the privately optimal fees. The “Total” row averages across platforms, using platforms’ total
sales under the privately optimal fees as weights. The markup is defined as the ratio of platform profits to the number of
orders placed on the platform.

Table O.30: Effects of monopolization on DoorDash fees

Quantity
Privately Socially
optimal optimal

Consumer fee ($) 1.79 0.19
Restaurant commission (pp) -6.98 -0.58

Notes: This table provides the effects of transitioning from the status quo market structure to one in which DoorDash is
a monopolist on sales-weighted average consumer fees and restaurant commission rates. The weights are DoorDash’s sales
under the the status quo competitive regime.
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