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Abstract

This paper characterizes the identifiability of demand models with network exter-

nalities. Guided by my identification analysis, I empirically evaluate how network

externalities shape the effects of consolidation in the US dating websites indus-

try. Network externalities often arise in differentiated products markets, and

especially in platform markets. I show that demand models with network ex-

ternalities are generally not identified with market-level data alone. This result

reflects the impossibility of independently varying product characteristics and

market shares at the market level. However, straightforward extension of results

in Berry and Haile (2022) establishes that demand models with network external-

ities are identified under reasonable conditions with microdata linking consumers’

decisions and characteristics. I estimate demand for dating websites using online

browsing microdata. Under my preferred estimates, a user of a site values a 10%

increase in the site’s usership at $6.34/month. I find that welfare losses from

increased prices outweigh the gains from network externalities associated with

monopolization. Additionally, I find that—due to platform differentiation—a

firm earns higher profits from joint ownership of the two largest dating websites

when it does not integrate these sites.
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1 Introduction

This paper characterizes the identifiability of demand models with network externalities.

Guided by my identification analysis, I empirically evaluate how network externalities shape

the welfare effects of consolidation in the US dating websites industry. Network externalities,

which arise when a product’s value to a consumer depends on other consumers’ usage of the

product, often affect demand for differentiated products. They are especially relevant in

platform markets wherein the selection of agents available for interaction on a platform

underlies the platform’s value. When network externalities affect consumer demand, they

change standard analyses of competition. Consumers who enjoy using the same social media

service as other consumers, for example, may benefit from the consolidation of social media

services despite the capacity for consolidation to induce quality reduction or price hikes.

The analysis of demand faces identification challenges in the presence of network externalities.

These challenges reflect the fact that a change in a product characteristic both directly and

indirectly affects consumer choices. First, consumers may intrinsically value the product

characteristic; a product’s price reduction, for example, may draw consumers to use the

product (all else equal). The change in product usage owing to this direct effect of changing

a product characteristic may further shift the product’s appeal to consumers on account

of network externalities; the new consumers that a price reduction draws to a product,

for example, make the product more appealing to other consumers under positive network

externalities. Disentangling the direct effect and network externalities is often impossible

with only market-level data on product characteristics and sales; this reflects the impossibility

of varying product characteristics while holding market shares fixed to identify product

characteristics’ effects on consumer choices.

The availability of microdata linking individual consumers’ choices with their characteris-

tics, however, improves the prospects for identification. Within- and cross-market variation

in consumer characteristics provide different information about (i) direct effects of consumer

characteristics on consumer choice probabilities and (ii) network externalities. The first of

these effects are straightforwardly identified by varying consumer characteristics within a

market. Consumers with fast internet connections, for example, may be more likely to use a

dating website than consumers in the same city with slow connections. Varying a market’s

distribution of consumer characteristics, meanwhile, has two effects on product usage: the

aforementioned direct effect identified from within-market variation, and an indirect effect

reflecting network externalities. This indirect effect arises, for example, when an increase in

the share of a city with fast internet leads more consumers to use dating websites, thereby

making the dating website more appealing to other consumers. When the direct effect is

identified from within-market variation, cross-market variation identifies the indirect effect

under appropriate assumptions on the nature of variation across markets. My approach uses

instrumental variables that capture this variation. The first set of available instruments in-

cludes functions of market-specific distributions of individual characteristics, e.g., the share
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of consumers in a city with high-speed internet. The validity of these instruments requires

that their associated distributions of consumer characteristics to not directly affect consumer

tastes. This condition is violated when firms set local product quality or advertising in mar-

kets based on local consumer characteristics and when consumers’ tastes directly depend on

the characteristics of their neighbours. The second set of instruments includes character-

istics of other products in the market, i.e., the instruments of Berry et al. (1995). These

are generally the only two types of instruments that are consistent with the demand model

considered by this paper.

My identification findings guide my empirical analysis of the US dating websites industry in

2007–2008. The industry witnessed considerable consolidation in the decade following this

time period, with market leader Match acquiring competitors OKCupid in 2011 and Plenty

of Fish in 2015. Also, Match competitor Spark Neworks acquired the dating site Zoosk

in 2019. These acquisitions did not immediately lead to the integrations of the acquiring

firms’ platforms with the acquired platforms. This raises the question of whether network

externalities could make acquisitions followed by platform integrations welfare enhancing,

and of whether pronounced platform differentiation could explain firms’ hesitancy to inte-

grate platforms following acquisitions. An additional feature of the dating websites industry

is that market shares exhibit considerable variation across geographically defined markets;

this is consistent with different markets tipping toward different sites on account of network

externalities. Another possibility is that taste differences across markets induce cross-market

variation in market shares.

I study demand for dating websites using online browsing microdata that provides consumer

locations, characteristics, and records of browsing dating websites. Given my theoretical

conclusion that within-market variation in consumer characteristics is important for identi-

fication, I specify a model of demand with rich consumer heterogeneity based on observable

characteristics. Additionally, I estimate demand using instrumental variables. I use instru-

ments based on market-specific distributions of consumer characteristics, and I choose the

consumer characteristics on which I base my instrumental variables to mitigate concerns

that these variables will violate the exclusion restriction required for their validity. These

characteristics include an indicator for whether the consumer has broadband internet and

measures of consumers’ internet usage.

My estimates suggest that network externalities are substantial and account for most the

cross-market variation in sites’ market shares. Under the estimates of my preferred spec-

ification, an inframarginal user of a site values a 10% increase in the site’s usership at

$6.34/month, which is about one third of the most popular site’s price. Moreover, my esti-

mates provide evidence of age-based homophily in dating website choice. I use my counterfac-

tual model to decompose variation in dating website usage across geographical markets into

network externalities, unobserved local taste differences, and differences in consumer charac-

teristics; I find that most of this variation owes to network externalities. My estimated model

also facilitates my assessment of the welfare effects of consolidation in the dating websites
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industry, i.e., whether network externalities are strong enough to counteract the usual harms

to consumers associated with consolidation related to market power. Counterfactual analysis

conducted with my estimated model suggests that welfare losses from increased prices exceed

the gains from network externalities associated with a move to monopoly in the dating web-

site industry. These results suggest that the importance of network externalities in platform

markets does not nullify the usual importance of price responses in shaping the welfare effects

of consolidation. Additionally, I find that a firm earns higher profits (excluding fixed costs)

from joint ownership of the two largest US dating websites than from integrating these dating

websites into a single site. This outcome reflects that a portfolio of differentiated website is

more attractive to consumers than a single website with an especially large user base. The

strength of platform differentiation relative to network externalities may explain for why

dating website acquisitions have not been followed by website integrations in practice.

1.1 Related literature

The literature on network externalities distinguishes between direct and indirect network

externalities. Direct network externalities emerge when an agent’s pay-offs directly depend

on the choices of other agents facing the same choice problem, whereas indirect network

externalities arise when engagement with a product induces changes in the product’s attrac-

tiveness. Indirect network externalities are typical of two-sided platforms; see Jullien et al.

(2021) for discussion of these externalities. My study focuses on direct network externalities,

which are typical of social media and communication platforms.

There is a sizeable literature on the identification of network externalities, broadly defined.

Many such papers concern themselves with “peer effects”; some notable papers in this cate-

gory include Manski (1993), Angrist (2014), Graham (2008), Graham (2018), and Bramoullé

et al. (2009). These papers investigate the determination of an individual’s (typically con-

tinuous) outcome by observable covariates, characteristics of the individual’s peers, and

an unobservable shifter of the outcome of interest. My paper considers a different setting

in which individuals’ choices among discrete alternatives are simultaneously determined in

light of network externalities, alternative-specific characteristics, and alternative-specific un-

observables. Additionally, my paper’s static setting contrasts to the dynamic setting studied

by, e.g., Kim et al. (2021). The theoretical literature that is most closely related to my work

is that on discrete choice models of social interactions. This literature is reviewed by Durlauf

and Ioannides (2010), and many of its studies have been authored by Brock and Durlauf.

See, for example, Brock and Durlauf (2001a), Brock and Durlauf (2001b), and Brock and

Durlauf (2007). This paper’s analysis differs from this literature in several ways. First, I

analyze a setting with a continuum of decision-makers, as is typically specified in discrete-

choice demand models in industrial organization. Second, I compare two common settings

in demand estimation in industrial organization: the setting in which the research has access

to data on quantities and product characteristics at the market level (“market data”), and

the setting in which the research has access to data on individual consumers’ decisions and

4



characteristics (“microdata”). My paper also focuses on models of differentiated products

demand of the sort reviewed by ?. I especially emphasize the role of these models’ structural

product/market-level unobservables, which are often denoted ξjt and which are the source of

the econometric endogeneity problem in differentiated products demand models. My paper

makes no restriction on the distribution of alternative/market-level unobservables; contrast

this approach to Brock and Durlauf (2007), who focus on cases in which these unobservables

are uniformly zero or are otherwise restricted.

My paper also relates to the empirical literature on consumer choice with network external-

ities. Some empirical papers that operate in a setting similar to that of my paper include

Timmins and Murdock (2007) (which follows the model and estimation procedure of Bayer

and Timmins (2007)), Bayer et al. (2004), Guiteras et al. (2019), and Allende (2019). My

work is somewhat less related to empirical studies of two-sided markets with indirect network

externalities, e.g., Rysman (2004) and Farronato et al. (2020).

My paper relates to several other literatures. First, I use techniques from the literature on

the identification of demand for differentiated products, including Berry et al. (2013), Berry

and Haile (2014), Berry and Haile (2016), and especially Berry and Haile (2022). My paper

also relates to the literature on matching markets—e.g., Smith (2006)—which provides a

microfoundation for network externalities in the dating websites industry. Last, my paper

relates to the literature on online dating. This literature has mostly focused on activity

within a dating website as opposed to the role of network externalities in driving choice of

dating website, e.g., Hitsch et al. (2010) and Fong (2020).

2 Setting and data

This paper’s empirical application studies the US dating websites industry in 2007–2008

using the Comscore Web Behavior Database. This dataset includes the browsing and online

transactions records for a large panel of US households (91689 panelists in 2007 and 57817

panelists in 2008). Comscore records these data using a proxy server through which all of

its panelists’ online activity is routed. Each panelist’s activity is recorded for an entire year

of participation. Most individuals in the Comscore data appear in only one year. When

an individual appears in multiple years, I treat that individual’s records for each year as

a separate panelist. Note that De Los Santos et al. (2012) find that individuals in Web

Behavior Database are representative of online buyers in the US.

For each household in the Comscore data, I observe each domain visited by the consumer, the

time of the visit, the duration of the visit, and the number of pages viewed by the consumer

during the visit. I also observe various consumer characteristics including income group,

educational attainment, race, age group, and ZIP code. I supplement the Comscore data

with geographical and population data from the US Census Bureau.

Table 1 reports the most-used dating sites in 2007–2008. Each row of the “Share (%)” column
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Table 1: Most popular dating websites sites, 2007–2008

Site Share (%)

match.com 8.61
eharmony.com 4.63
pof.com 1.93
chemistry.com 0.89
okcupid.com 0.82
matchmaker.com 0.54
lavalife.com 0.34
christianmingle.com 0.32
jdate.com 0.23
loveandseek.com 0.18
shaadi.com 0.16
badoo.com 0.16
zoosk.com 0.14
catholicmatch.com 0.07
farmersonly.com 0.04

Note: The “Share (%)” column provides the percentage of Comscore panelists spending ≥ 5 mins on
the indicated site.

reports the share of households in the Comscore data who spend at least five minutes on the

indicated site. Most dating website usage in my sample is accounted for by a few major sites

that appeal to broad audiences. These include match.com, eharmony.com, pof.com (“Plenty

of Fish”), and okcupid.com, which are the sites that I focus on in my main analysis. A

smaller but not insubstantial amount of usage is accounted for by sites appealing to various

subpopulations (e.g. catholicmatch.com for Catholic users and silversingles.com for

older users). Of the sites on which I focus in my empirical analysis, eharmony.com and

match.com require payment for use whereas pof.com and okcupid.com are free to use.

These free sites rely on advertising and paid premium features for revenue. The monthly

prices of subscriptions for eharmony.com and match.com in 2007 were $59.95 and $34.99,

respectively.

The markets in my analysis are geographical regions based on combined statistical areas

(CSAs), which consist of counties that are economically and/or socially connected. I con-

struct CSA/state pairs by dividing each CSA up into its parts that belong to different states.

The New York City CSA, for example, has parts in New York, Connecticut, New Jersey, and

Pennsylvania. The CSA/states that I form from this CSA are New York (NY), New York

(CT), New York (NJ), and New York (PA). I then construct the geographical units underly-

ing the markets in my analysis by adding each county that is within 50 miles of a CSA/state

and that does not belong to a CSA/state to this county’s closest CSA/state.

I assign each panelist in my estimation sample to either a primary site or the outside option.

A panelist who visits at least five pages within a dating website, visits the site during at

least two distinct sessions, and spends at least five minutes on the site qualifies as a user of

that site. A panelist’s primary site is the site on which the panelist spends the most time
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Table 2: Multihoming patterns

Website
Share of Share also using

panelists using eharmony.com match.com okcupid.com pof.com

eharmony 0.35 1.00 0.38 0.02 0.09
match 0.67 0.20 1.00 0.02 0.07
okcupid 0.04 0.19 0.26 1.00 0.19
pof 0.15 0.21 0.32 0.05 1.00

among the sites of which the panelist is a user. In order to capture substitution into dating

websites by users who did not previously use these websites, I specify a market for dating

websites that extends beyond dating website users as defined above. In particular, I consider

panelists who visit a dating website at least once but do not qualify as a user under the

criteria above as having chosen my model’s outside option for the purposes of estimation;

I explain this outside option in detail later in the paper. I drop all other panelists from

the sample used in my estimation procedure and counterfactual analysis. After determining

whether each panelist is a dating website user, I drop all markets from my analysis with

under 100 observed users.

2.1 Multihoming

Consumers in my setting are able to use multiple websites, although few consumers multi-

home in practice. Among all panelists who use at least one site according to the criterion

established by the preceding section, 81% use only one website, 17% use two, and 2% use

over two sites. Table 2 reports shares of each site’s users who use other dating websites. Not

only do few panelists multihome, panelists who multihome generally spend a large share of

their time on a single dating website: the average number of minutes that a multihoming

panelist spends on the panelist’s primary site is 1023, whereas the average number of min-

utes spent on other sites is only 158. In addition, the average share of time that a panelist

spends on the panelist’s primary site among all dating websites that the panelist uses is 79%;

the median across panelists is 81%. Although multihoming can play an important role in

platform competition, the fact that panelists in my sample generally concentrate their online

dating activity on a single site motivates my decision to use a model in which each consumer

selects a single primary site.

2.2 Relationship between local population and dating website usage

Network externalities could make dating websites especially popular in high-population lo-

calities with higher potential numbers of dating website users. The correlation between a

measure of the local population around a consumer’s residence and the consumer’s dating

website usage may also reflect that more populous areas could have more offline dating op-

portunities. To obtain suggestive evidence of these hypotheses, I regress measures of dating
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Table 3: Distribution of local population measure

τ τ th quantile

0.10 8150
0.25 26992
0.50 96418
0.75 226322
0.90 429453

website usage on a measure of local population. I define a consumer’s local population as

the combined population of ZIP Code Tabulation Area whose geographic centres are within

five miles of the geographic centre of the consumer’s own ZIP Code Tabulation Area. Ta-

ble 3 reports some of the quantiles of this variable in my sample of Comscore panelists in

2007–2008. Table 4 reports the results of the usage regressions whereas Figure 1 plots the

coefficients and 95% confidence intervals from Panel A of this table. The results in Panel

A correspond to regressions where indicators for population ranges are the only regressors

whereas the results in Panel B correspond to regressions in which I also control for income,

race, educational attainment, internet speed, age, household size, and census region. The

row, e.g., “Pop.: 0.10q to 0.25q” refers to an indicator for a user’s local population falling

between the 0.10 and 0.25 quantiles of this variable. The first row of each panel provides

the dependent variable in the regression. The “usage indicator” variable takes on a value of

one if the household viewed at least 10 pages on a dating website across at least 5 browsing

sessions and spent at least 5 minutes on dating websites. Otherwise, it takes on a value

of zero. Here, the dating websites included in the analysis are eharmony.com, match.com,

pof.com, and okcupid.com. “Duration” is the total time in minutes that the user spent on

these dating websites. “Pages viewed” is the number of pages on these websites that the

user viewed. “Sessions” is the number of distinct browsing sessions in which the user visited

one of these dating websites. For all regressions except the “usage indicator” regressions, I

dropped users with durations, number of pages viewed, or number of sessions above these

variables’ respective 0.99 quantiles.

The results in Table 4 are not estimates of the effect of population on dating website usage

given that residents of high population areas are likely unobservably different than people

in less populous areas in ways that could affect dating website usage. With that said, the

result that dating website usage seems to initially rise in local population before falling is

compatible with both (i) network externalities and (ii) offline dating opportunities correlated

with local population that compete with online dating.

Last, Figure 2 provides evidence of cross-market variation in site market shares. In the

presence of network externalities, a site’s popularity in a region could be self-fulfilling in that

a high number of users on a site explains the site’s appeal to these users. In a market with

the same exogenous characteristics, a site’s lack of popularity could similarly be self-fulfilling.

Thus, network externalities could lead a site to be popular in some regions but not others

even in the absence of differences in site characteristics.
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Table 4: Local population and dating website usage

Panel A: Baseline results

Usage indicator Duration Pages viewed Sessions

Pop.: under 0.10q 0.0574 9.18 11.24 1.21
(0.0020) (0.47) (0.68) (0.04)

Pop.: 0.10q to 0.25q 0.0633 9.69 12.50 1.25
(0.0017) (0.38) (0.55) (0.03)

Pop.: 0.25q to 0.50q 0.0702 11.02 15.14 1.43
(0.0013) (0.29) (0.43) (0.03)

Pop.: 0.50q to 0.75q 0.0682 10.82 15.43 1.36
(0.0013) (0.29) (0.43) (0.03)

Pop.: 0.75q to 0.90q 0.0678 10.08 14.24 1.34
(0.0017) (0.38) (0.55) (0.03)

Pop.: over 0.90q 0.0607 9.35 12.75 1.26
(0.0020) (0.47) (0.68) (0.04)

R2 0.066 0.033 0.029 0.066
N 147092 145245 145245 145245

Panel B: Results with controls

Usage indicator Duration Pages viewed Sessions

Pop.: under 0.10q 0.0679 12.64 12.60 1.29
(0.0042) (0.97) (1.40) (0.09)

Pop.: 0.10q to 0.25q 0.0728 13.23 13.62 1.30
(0.0041) (0.94) (1.37) (0.08)

Pop.: 0.25q to 0.50q 0.0787 14.61 16.02 1.46
(0.0041) (0.93) (1.35) (0.08)

Pop.: 0.50q to 0.75q 0.0769 14.54 16.38 1.39
(0.0041) (0.93) (1.36) (0.08)

Pop.: 0.75q to 0.90q 0.0765 13.80 15.28 1.36
(0.0042) (0.96) (1.40) (0.09)

Pop.: over 0.90q 0.0691 13.09 14.00 1.27
(0.0043) (0.98) (1.42) (0.09)

R2 0.071 0.034 0.031 0.07
N 147092 145245 145245 145245
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Figure 1: Local population and dating website usage

Figure 2: Cross-market variation in sites’ market shares in 2007–2008

Panel A: Large paid sites

Panel B: Small free sites

Notes: These plots display the 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95 quantiles of sites’ market shares
across markets in the 2007–2008 time period.
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3 Model

This section proposes a semi-nonparametric model of demand with network externalities

that is largely based on the general demand model of Berry and Haile (2022). The section

also describes a model specification that is especially relevant for empirical applications.

Although I often frame the model as a discrete-choice model of demand, this framing is

not necessary: consumers choice probabilities can be interpreted as quantities purchased as

opposed probabilities of choosing one unit of a specific alternative.

Table 5: Summary of notation

Symbol Description In market data? In microdata?

Mt Market sizes X X
st Market shares X X
xt Market characteristics X X
ξt Unobserved product qualities
sit Consumer choice probabilities X
wit Consumer characteristics X
di Consumer demographic group X

The model features markets t, each with a measure Mt continuum of consumers. Each

consumer chooses between J products and an outside option. Let J denote the set of

products excluding the outside option. Each consumer i belongs to one demographic group

di among D such groups, and the measure of consumers in demographic group d in market

t is Md
t . In the dating website example, the demographic groups could be defined according

to age (i.e., under and over 35 years old) to allow preferences for other users to depend

on the age of those users. Consumers i choose between alternatives based on observable

individual characteristics wit, observable market characteristics xt, products’ unobservable

qualities ξt = {ξdjt : 1 ≤ j ≤ J, 1 ≤ d ≤ D} of products in market t that may vary across

demographic groups,1 and market shares st = {sdjt : 1 ≤ j ≤ J, 1 ≤ d ≤ D}. For the

remainder of the paper, I denote {ζjt}j∈Jt by ζt when I have defined random variables ζjt for

each j ∈ Jt. I similarly use ζt to denote {ζdjt}j∈Jt,d=1,...,D when I have defined ζdjt for each

j ∈ Jt and d ∈ {1, . . . , D}. Note that, in the market data setting, the researcher observes

only market shares st and market characteristics xt. I assume that there is no observed

demographic variation in the market data setting and therefore set D = 1 when analyzing

this case in the main text. In the microdata setting, we additionally observe wit, di, and

sijt, the last of which is consumer i’s probability of choosing product j conditional on wit,

di, xt, ξt, and st. See Table 5 for a summary of the notation and for a specification of the

variables present in market level data and in microdata.

Consumer choice models typically feature prices as product characteristics contained in xt.

Additionally, price is usually thought to be endogenous in the sense that it is dependent on

1Although I refer to the ξt as qualities, they may reflect unobserved demand shifters that are not best
interpreted as product quality, e.g., informative advertising.
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ξt. In what follows, I ignore price endogeneity (and, more generally, endogenous product

characteristics other than st) to focus attention on network externalities.

The primary structural object in this model is the choice probability function σ, which

provides consumer i’s choice probability sijt for each j as a function of various market and

individual characteristics:

sijt = σj(xt, st, ξt, wit, di), (1)

Integrating over wit yields the average choice probabilities function σ̄t, which is the structural

object of interest when studying identification with market data: for each j,

σ̄jt(xt, st, ξt) = E [σj(xt, st, ξt, wit, di) | xt, st, ξt, t] .

The conditioning on t and the t subscript on σ̄jt are included to indicate the dependence

of average choice probabilities on the distribution of (wit, di) on t (i.e., that markets have

different distributions of consumer characteristics). In what follows, I use Fwt to denote the

distribution of {wijt}j∈Jt in t.

Before discussing the determination of market shares st, I describe a semi-parametric spec-

ification of the general model described above. In this specification, consumer i selects the

alternative j that maximizes the indirect utility

uj(xt, st, ξt, wit, di, εit) =

x′jtβ + fdij (st) + ξdijt + w′itλj + εijt, j 6= 0

εi0t, j = 0.
(2)

where εijt are unobservables and fdj are functions unknown to the econometrician. An

especially simple specification of fdj in the case without multiple demographic groups is

fj(st) = γsjt. In this case, γ > 0 implies that consumers enjoy choosing the same product as

other consumers whereas γ < 0 implies that consumers dislike when others choose the same

product.

The choice probability function in this model is, for each j,

σj(xt, ξt, st, wit, di) = Pr

(
j = arg max

k∈{0,1,...,J}
uikt(xt, st, ξt, wit, di, εit) | xt, ξt, st, wit, di

)
.

Although the model features a choice of one alternative, it can accommodate multihoming

via the definition of alternatives representing the choice of multiple platforms. For illus-

tration, suppose that a consumer chooses whether to join each of two platforms, and that

the consumer receives utility proportional to the share of consumers available through these

platforms. Assume that there is only one demographic group for simplicity. In this case, we

can let j = 3 denote the option of joining both platforms and set f1(st) = γ × (s1t + s3t),

f2(st) = γ × (s2t + s3t), and f3(st) = γ × (s1t + s2t + s3t), where γ is the proportionality

factor that governs the strength of network externalities.
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In a discrete-choice model of demand without network externalities, we obtain market shares

simply by integrating choice probabilities across consumers. When we introduce network ex-

ternalities, market shares are instead fixed points of the function σ̄t introduced above. For

simplicity of exposition, I now focus on the D = 1 case; the generalization to D > 1, which

is described by Appendix C.4, is straightforward. The exogenous objects characterizing a

market are the distribution of demographic characteristics Fwt , the observed market char-

acteristics xt, and the unobserved product qualities ξt. Let χt = {xt, ξt} denote both the

observed and unobserved product characteristics. The endogenous variables are the market

shares, which I assume to be a solution of the equation

st = σ̄t(xt, ξt, st). (3)

In the model outlined above, products’ market shares rather than their total quantities (i.e.,

their shares times the market size) enter the choice probability functions. I later consider

models in which choice probability functions depend on total quantities.

3.1 Multiple equilibria

The existence of equilibrium market shares, i.e., solutions of (3), is ensured by Brouwer’s

fixed-point theorem when σ̄t is continuous in st. The equilibrium is not, however, ensured to

be unique. This complicates analysis because the effect of changing market characteristics

depends on which equilibrium is realized in counterfactuals. I aim to avoid this complication

by appealing to the fact that equilibria may be locally unique. Suppose we observe market

characteristics χt = (xt, ξt) and market shares st. By the implicit function theorem, there

is a unique function s∗ defined on a neighbourhood X of χt such that s∗(χt) = st and

χ ∈ X,

s∗(χ̄)− σ̄t(χ̄, s∗(χ̄)) = 0

as long as the following matrix is nonsingular:

I −Dsσ̄t(χt, st), (4)

whereDsσ̄t(χt, st) is the derivative of σ̄t(χt, st) with respect to st. I call the unique s∗ function

defined in the neighbourhood of a particular χt an equilibrium surface around (χt, st). Local

uniqueness of the equilibrium st at market characteristics χt means that there is a unique

equilibrium surface defined around χt. In Appendix B, I discuss the condition that (4) must

be nonsingular, and I argue that nonsingularity occurs only in knife-edge cases.

As argued by Bayer et al. (2004), the concept of local uniqueness is useful because it allows

for coherent statements about the effects of marginal changes in market characteristics.

Indeed, when an equilibrium surface exists around an equilibrium, the slope of this surface

with respect to various market characteristics provides marginal effects of changes in market

characteristics.
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3.2 Microfoundation for network externalities in the dating industry

The presence of network externalities in demand for dating websites can be microfounded

using a model of search and matching within websites. Appendix A proposes such a model

that gives rise to a dependency between the number of users on a platform and a user’s

valuation of the platform. This model is a variant of Smith (2006)’s model of search and

matching in the marriage market featuring quadratic search technology, exogenous matches

and match destruction occurring at exponential rates, and users who idiosyncratically value

matches with other users. Appendix A describes the model in detail and shows that a

consumer’s value from using the platform is increasing in the share of other consumers using

the platform.

4 Identification

Although models of demand for differentiated products are identified with market data alone

under an appropriate index assumption, the availability of suitable instrumental variables,

and other reasonable assumptions—see Berry and Haile (2014)—adding network externalities

to these models generally introduces a requirement for microdata and additional assumptions.

This section begins by discussing the main identification problems and their solutions in

the context of a simple parametric model of network externalities before generalizing this

discussion to a semi-nonparametric model.

Before beginning my identification analysis in earnest, I clarify the goal of this analysis. I

seek to identify the average choice probability function σ̄t in the market data setting and the

choice probability function σ in the microdata setting. These functions provide consumers’

demanded quantities under various market characteristics and market shares. An alternative

object of identification is the mapping from market characteristics {xt, ξt} to market shares

st that is implicitly defined by the fixed point condition (3). This mapping may be identified

even when σ̄ is not identified. In this case, the overall effects of xt on demand are uniquely

determined, but the extent to which these effects owe to preferences for xt as opposed to

network externalities is not uniquely determined. My identification analysis seeks to iden-

tify σ̄ rather than just the mapping {xt, ξt} 7→ st for several reasons. First, the welfare

consequences of changes in market characteristics depends on the contribution of network

externalities to the effects of market characteristics. Consider, for example, decreasing a

platform’s membership price for a subset of consumers. Absent network externalities, ineli-

gible consumers are no better or worse off due to the targeted price decrease. Under positive

network externalities, however, inframarginal ineligible consumers are better off because the

targeted price decrease expands the platform’s usership. Second, the effects of counterfac-

tual changes in the market environment often depend on the nature of network externalities.

The integration of two platforms that combines their user bases, for example, has a greater

effect on consumers’ willingnesses to pay for the integrated platform when network external-

14



ities are stronger. Last, the identification of network externalities enables an evaluation of

whether a market is prone to tipping toward a single dominant platform on account of these

externalities.

4.1 Simple model

Consider a market t in which consumers choose whether to use a dating website. Let yit =

1{uit ≥ 0} denote an indicator for whether consumer i uses the dating website and specify

the indirect utility uit as

uit = xt + γst + ξt − εit.

Here, xt is an exogenous characteristic of the dating website, st is the share of users in

market t who use the dating website, and ξt is the unobservable quality of the dating website

in market t. Additionally, εit is consumer i’s idiosyncratic taste for the website; assume that

εit is iid according to the strictly increasing distribution function F . We fix the coefficient

of xt at one as a scale normalization. Integrating over εit while holding fixed each of st, xt,

and ξt, we see that the consumer’s probability of choosing to use the dating website is∫
1{xt + γst + ξt − εit ≥ 0}dF (εit) = F (xt + γst + ξt).

Imposing that the market share equals the consumer’s probability of using the site, we

obtain

st = F (xt + γst + ξt)

or, inverting the strictly increasing distribution function F ,

F−1(st) = xt + γst + ξt. (5)

Suppose that we observe only st and xt for a population of markets t; that is, suppose we

are in the market-data setting. The true model primitives θ = (F, γ) are observationally

equivalent to the alternative model primitives θ̃ = (Gδ, γ + δ), where δ ≥ 0 and

G−1δ (s) = F−1(s) + δs.

As Figure 3 illustrates, increasing δ increases the variance of Gδ. This dampens the effect of

xt on st. This observational equivalence result reflects that we cannot distinguish between

the following two explanations for the observed relationship between xt and st:

(i) Consumers dislike spending on dating websites (direct effect of xt on market shares;

this effect is relatively large when δ is low), and

(ii) Consumers like that lower prices attract more potential matches to dating websites

(indirect effect of xt on market shares owing to network externalities; this effect is

relatively large when δ is high).
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Figure 3: Illustration of Gδ

The source of the identification problem is that we cannot fix st while varying xt to iden-

tify the effect of xt on choice probabilities. Note that a researcher who ruled out network

externalities when γ > 0 would overstate the effect of xt on consumer choice probabilities

by attributing the entire positive relationship between xt and st to the direct effect of xt on

choice probabilities.

Microdata including individual consumer choices and characteristics allows us to identify

the model. To see why, suppose that the individual characteristic wit that we observe is a

component of the idiosyncratic taste term εit: εit = wit + ε̃it. In the dating website setting,

the consumer characteristic wit could be an inverse measure of internet speed. Suppose

additionally that the remaining unobservable aspect of idiosyncratic tastes ε̃it is distributed

according to F̃ independently of wit so that

uit = βxt + γst + ξt︸ ︷︷ ︸
=:δt

−wit − ε̃it.

Here, δt is the average taste for the dating website in market t. We now see that, when yit

is an indicator for whether consumer i uses the dating website and the t subscript on Prt

indicates conditioning on all characteristics of market t,

Prt (yit = 1 | wit = w̄) = Prt (uit ≥ 0 | wit = w̄)

= Prt (ε̃it ≤ δt − w̄)

= F̃ (δt − w̄).

(6)

The left-hand side is observable and the final expression on the right-hand side is one mi-

nus the distribution function of δt + εit. When wit has a large support, (6) identifies the

distribution of δt + ε̃it. With a location normalization (e.g. Et[ε̃it] = 0), knowledge of this

distribution separately identifies δt and F̃ .

The remaining task of identification is the separate identification of the components of aver-

age tastes for the website in market t, i.e., δt. The primary challenge in completing this task

is the fact that ξt and st are mechanically dependent because ξt partly determines st. If wit’s
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distribution Fwt varies across markets, then functions of this distribution (e.g., its mean) will

shift st. If Fwt and ξt are independent, then such functions of Fwt will be suitable excluded

instruments for st.
2 It follows that, as long as xt is mean-independent of ξt (i.e., E[ξt|xt] = 0),

each of β, γ, and ξt will be identified by an instrumental variables argument.

The argument of Berry and Haile (2022) can be applied to identify this simple model even

without a large support assumption. Their approach involves the assumption of a common

choice probability s∗ that can be achieved in any market t with the appropriate choice of

wit. In my setting, the common choice probability condition requires that there is a s∗ such

that for all t, the support of wit includes a point wt(s
∗) satisfying

F̃ (δt − wt(s∗)) = s∗.

As long as F̃ is injective, the left-hand side of the equation above can be inverted to ob-

tain

wt(s
∗) = βxt + γst − F̃−1(s∗) + ξt. (7)

Given that the value wt(s
∗) that achieves s∗ in market t is observable, equation (7) is a

standard regression equation with st as an endogenous regressor. The preceding paragraph’s

discussion of instruments equally applies to (7). Instruments permit the identification of ξt,

which immediately yields the identification of the function yielding consumer choice proba-

bilities: (wit, xt, st, ξt) 7→ E[yit|wit, xt, st, ξt]. We obtain this function, which is typically the

main structural object of interest, without necessarily point identifying F̃ .

I now provide an example to build intuition for the identification strategy described above.

Suppose that, within some market t, consumers with faster internet speeds are more likely to

use the dating website. Based on the observed within-market relationship between internet

speed and website usage, we can predict how dating website usage will increase in t when

we increase internet speeds for all consumers in the market. If there are positive network

externalities (i.e., γ > 0), then this will be an underprediction: the prediction will capture

the direct effect of increasing internet speeds on consumers’ website usage as identified using

within-market variation, but it will not capture the fact that increasing usage rates across the

market increases the site’s appeal due to network externalities. The difference between our

prediction of the site’s increase in popularity based on within-market variation and the actual

increase in popularity identifies the extent of network externalities. To connect this example

to my formal identification argument, within-market variation identifies the relationship

between wit (which is negative internet speed in the example) and choice probabilities holding

market shares fixed as shown by (6). Increasing average internet speeds in market t in the

example is analogous to using cross-market variation in the distribution of wit to identify

the effect of market shares on δt.

There are several ways that the instrumental variables approach described above could fail.

First, the approach is threatened if consumers locate based on ξt. As an example, consumers

2This logic is suggested in Section 7.1.2 of Jullien et al. (2021).
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who enjoy using the dating website may locate in areas where fast internet is more readily

accessible, which would induce dependence between average internet speeds and unobserved

tastes for dating website. Second, if the dating website provides especially high service

or high levels of advertising in regions where it is most appealing because of the region’s

distribution of individual characteristics wit, then ξt will depend on Fwt . Contextual network

effects also threaten the instrumental variables approach. The literatures on peer effects and

network externalities use the term contextual network effects to describe the case in which an

agent’s outcome of interest (e.g., choice of platform) depends directly on the characteristics

of connected agents (e.g., people in the same market). For the market-specific distribution

Fwt of wit to directly affect uit in my model, it must enter through the unobservable ξt.

This induces a violation of the identification condition. The identification threat posed by

contextual network effects means that the researcher must be careful in selecting which

characteristics wit to use in constructing instruments.

In the binary choice setting above, instruments based on Fwt are the only excluded shifters

of st available. In a setting with multiple alternatives, characteristics of other alternatives—

which are called BLP instruments in the literature on differentiated products demand mar-

kets following their use by Berry et al. (1995)—become available under standard exclusion

restrictions. These additional instruments, however, are not available in settings with mul-

tiple alternatives without cross-market variation in the choice set. This is relevant because

platforms competing across different geographically defined markets often exhibit little or no

variation in observable characteristics across regions. Therefore, the previous paragraph’s

enumeration of plausible ways for instruments based on Fwt to fail may seem pessimistic

about prospects for identifying demand with network externalities. Solutions include the

randomization of characteristics wit (e.g., through platform-adoption subsidies) or the col-

lection of data on individual characteristics that are unlikely to drive targeted promotion or

contextual network effects.

Although microdata is necessary to identify a model of the type discussed above in which

market shares directly enter consumers’ indirect utilities, market data may be sufficient when

consumers instead care about the quantity of consumers choosing each of the products on

offer. To see why, redefine uit in the above example as

uit = xt + γMtst + ξt − εit,

where Mt is the population of market t. When there are no network externalities, Mt and st

will be uncorrelated. When there are network externalities, Mt and st will correlate, which

provides identifying power. Indeed, a positive (negative) correlation between population

and the market share would suggest γ > 0 (respectively, γ < 0). This approach, however,

requires the strong assumption that Mt is excluded from uit apart from the Mtst term;

this assumption is violated when tastes for platforms differ across markets of different sizes

conditional on market characteristics xt.
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4.2 Identification with market data

The remainder of this section formalizes the identification arguments presented in the pre-

ceding subsection; a reader who is uninterested in the technical analysis of the identification

of demand with network externalities may proceed to Section 5. I begin by considering the

identification of a demand model with market data under an index structure similar to that

of Berry and Haile (2014):

σ̄(xt, st, ξt) = σ̄(δ(xt, st, ξt))

δj(xt, st, ξt) = xjt + hj(st) + ξjt,
(8)

where xt = [x1t, . . . , xJt]
′ is a vector of product characteristics that vary across markets.

I focus on the average choice probability function σ̄ rather than the consumer-level choice

probability function σ as the object that I seek to identify with market data because the con-

sumer characteristics that enter σijt as arguments are not available in market data. Although

σ̄ may depend on t through the distribution of individual characteristics wit, I rule out this

dependency when analyzing identification with market data because wit are not observable

in this setting. Note also that my approach allows for product characteristics other than xt,

which are required to satisfy the index restriction stated in (8); as Berry and Haile (2014)

suggest, the researcher can condition on exogenous characteristics x
(2)
t and suppress them in

the notation, implicitly identifying demand conditional on each x
(2)
t in these characteristics’

support under which the assumptions invoked to identify demand hold.

This index restriction (8) is stronger than that of Berry and Haile (2014) in that it limits the

endogenous variables of interest, st, to affect demand solely through an index in which both

xjt and ξjt enter additively. Berry and Haile (2014) do not restrict their endogenous variables

of interest to affect demand solely through such an index. I use a more stringent restriction

to show that the model is generally not identified even in the favourable case in which market

shares enter only through an additive index. Note that the imposition of a coefficient of one

on xjt is a scale normalization. As a location normalization, I also impose E[ξjt] = 0 for each

j. I slightly abuse notation in (8) by writing σ̄ both as a function of {xt, st, ξt} and as of the

index alone. In practice, I seek to identify σ̄ as a function of the index and to identify hj ,

which are sufficient for identifying σ̄j as a function of {xt, st, ξt}.

I now state and motivate an assumption under which I study identification with market

data.

Assumption INVERT-MARKET (Invertible demand — market data). The function σ̄

is injective on the support of δ(xt, st, ξt).

Berry et al. (2013) provide sufficient conditions for Assumption INVERT-MARKET that re-

quire a minimal amount of substitutability between products. Berry and Haile (2014) provide

identification results under these conditions, which they use to ensure an invertibility prop-

erty similar to that which I directly assume in Assumption INVERT-MARKET. Assumption
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INVERT-MARKET implies the uniqueness of a vector σ̄−1(δ) that solves σ̄−1(σ̄(δ)) = δ for

δ in the support of δ(xt, st, ξt).

The now provide the primary negative result of this section.

Proposition 1. Fix some model primitives θ := (σ̄, h). For any function σ satisfying

Assumption INVERT-MARKET, there is a function h̃ and such that θ̃ = (σ̃, h̃) is observa-

tionally equivalent to θ.

Proof. The primitives (σ̄, h) are consistent with the observable data if and only if

σ̄−1(st) = xt + h(st) + ξt. (9)

Define h̃(st) = h(st) + σ̃−1(st)− σ̄−1(st). Then,

σ̃−1(st) = xt + h̃(st) + ξt.

Thus, θ̃ = (σ̃, h̃) is observationally equivalent to θ.

The simple proof of Proposition 1 demonstrates the nature of the identification problem:

market shares appear in the inverse demand equation (9) directly through σ̄−1 and also

through the network externality function h. This problem reflects that substitution patterns

and network externalities cannot be empirically disentangled. To illustrate, an improvement

in a product that increases its market share at the expense of an alternative product could

be explained by either (i) a high degree of substitutability between the products, or (ii) both

products being subject to strong network externalities that amplify the first product’s gains

from its improvement and the second product’s losses. Note that the identification problem

does not relate to the unavailability of instruments: even if st were mean independent of ξt,

which is generally impossible, the model’s primitives would be unidentified.

Under the availability of instruments satisfying an appropriate exclusion restriction and

completeness condition, ξt is identified from the nonparametric regression equation xjt =

σ̄−1(st)− hj(st)− ξjt, where σ̄−1(st)− hj(st) is the corresponding nonparametric regression

function. Although the identification of ξt implies the identification of the mapping {xt, ξt} 7→
st, it does not imply the identification of σ̄, which is the object of interest in my identification

analysis.

Identification problems exist even when σ̄ is known. Note that the assumption of a known

σ̄ is invoked when the consumer/choice-level unobservables εij in a discrete-choice model

are assumed to follow a specific parametric distribution. Such an assumption amounts to

imposing substitution patterns between products. In the case of a known σ̄, the inverse

demand equation (9) becomes

σ̄−1j (st) = βjxjt + hj(st) + ξjt, j ∈ J (10)
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I introduce the coefficients βj because setting the coefficient of each xjt to one is no longer a

scale normalization when σ̄ is known. Note that there are J included endogenous regressors

st and only J−1 distinct instruments that are plausibly exogenous and capable of shifting st

in the context of the model, namely the BLP instruments. The deficit of instruments relative

to endogenous regressors could be rectified by excluding certain market shares from hj(st)

or expanding the dimension of xjt to obtain additional BLP instruments. I do not, however,

earnestly recommend making such assumptions; I outline the approach of assuming a known

σ̄ primarily to detail the woes of identifying a demand model with network externalities with

market data.

Appendix C.1 provides analysis of identification with market data in a case in which each

product’s δjt index depends only on that product’s own market share and in which that

market share appears as an additively separable linear term in the δjt index. These strong

functional restrictions permit identification when other products’ characteristics are valid

instruments for a given product’s market share.

Tastes for total quantities. Consumers may value products’ total quantities—that is, their

market shares times market sizes—instead of their market shares. This section considers

identification in this case under the index restriction

σ̄jt(xt,Mtst, ξt) = σ̄j(δ(xt,Mtst, ξt))

δj(xt,Mtst, ξt) = xjt + hj(Mtst) + ξjt.
(11)

I additionally impose the location normalization that, for each j, there is a known vector qj

such that hj(qj) = 0. When considering Assumption INVERT-MARKET in the context of

the total quantities model, I use σ̄ to denote the function of the index δ that appears on the

right-hand side of the first equation in (11).

Although the total quantities model suffers from similar identification problems as the market

shares model, cross-market variation in market size Mt allows for identification when this

variation is assumed to be appropriately exogenous. Exogeneity of market size depends

on mean independence of consumer tastes from market size, which will fail to hold when

consumers in differentially sized markets have different unobserved preferences. The following

proposition characterizes the identification of the total quantities model.

Assumption NPIV-TOT (NPIV for total quantities model). For each j, there is an ob-

servable random vector zjt that satisfies following conditions:

(i) Exclusion restriction: E[ξjt|zjt] = 0 (almost surely).

(ii) Completeness condition: for all real-valued functions Γ such that E|Γ(st)| < ∞,

E[Γ(st)|zjt] = 0 (almost surely) implies Γ(st) = 0 (almost surely).

There are two sorts of available instruments in this setting: the BLP instruments—that is,

characteristics xkt of other products k other than j—and market size Mt. Combining these
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instruments yields zjt of dimension J , which is the number of endogenous regressors in the

nonparametric function that I will use NPIV-TOT to identify.

Last, I use several technical conditions to establish the identification of the total quantities

model. These conditions restrict random elements’ supports and impose the differentiability

of structural functions to permit the use of calculus in identification analysis.

Assumption CALC-TOT (Technical conditions for total quantities model). (i) For each

j, hj is differentiable.

(ii) σ̄ is differentiable.

(iii) The support of Mtst is convex.

Proposition 2. Suppose that Assumptions INVERT-MARKET, NPIV-TOT, and CALC-

TOT hold. Additionally suppose that at least one of the two following assumptions holds:

(a) Own shares: hj(Ms) depends only on Msj for all j.

(b) Large support: for all s in the support of st, the support of Mt conditional on st = s is

(0, M̄(s)] for some M̄(s) > 0.

Then, h is identified on the support of Mtst, σ̄ is identified on the support of δ(xt, st, ξt), and

ξt is identified for all t.

Proof. See Appendix C.2.

Proposition 2 establishes that the prospects for identification improve when choice prob-

abilities depend on total quantities rather than market shares, although the proposition’s

conditions for identification are fairly strong. The “large support” assumption is useful

because it facilitates an identification-at-infinity argument relying on network externalities

becoming irrelevant as the market size tends to zero. Note that neither assumptions (a) nor

(b) is required to identify ξt, which is sufficient for the identification of the mapping from

{xt, ξt} to st. Assumptions (a) and (b) instead provide two different ways of separating the

effects of market characteristics on market shares into direct effects and indirect effects owing

to network externalities.

Appendix C.1 provides analysis of identification of the total quantities model in the case in

which products’ own quantities enter as additively separable linear terms in their δ indices.

This functional restriction permits identification of the model.

4.3 Identification with microdata

The identification of the model with microdata follows from the argument of Berry and Haile

(2022) with only minor adjustments. The fact that the model is identified under reasonable

assumptions with microdata but not with market data reflects the fact that, as Berry and

Haile (2022) note, microdata eliminates the need for instruments for quantities in a setting
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without network externalities. Berry and Haile (2014) and Berry and Haile (2022) identify

inverse demand using nonparametric instrumental variables equations in the market data

setting and the microdata setting, respectively. In the microdata case, market shares do not

directly enter this inverse demand function, which eliminates the need for instruments for

these variables. The elimination of a need for market share instruments reflects that within-

market variation allows for the identification of substitution patterns. Introducing network

externalities reintroduces market shares as arguments of this function, but instruments may

be available to nonetheless identify demand. This is impossible in the market data case

because market shares enter the inverse demand function in two separate ways: directly

in a sense that reflects inverse demand is the inverse of a mapping into quantities (this is

the mapping that governs substitution patterns) and indirectly through the dependence of

demand on network externalities.

I impose the following index structure on consumer i’s choice probability function:

sijt = σj(δ(wit, ξt), xt, st),

where sijt is consumer i’s probability of choosing alternative j and δ is an index function

that I specify as

δj(wit, ξt) = gj(wit) + ξjt (12)

for j ∈ {1, . . . , J}. I additionally impose that the individual characteristics wit have dimen-

sion of at least J . The identification argument that follows does not make use of market

characteristics xt; therefore, I condition on these characteristics and suppress them in the

notation. Additionally, the argument requires individual characteristics wit of dimension J .

Other individual characteristics may enter the model, but they do not play an important

role in the identification analysis and are therefore omitted in my exposition.3

I now provide assumptions are adapted with little revision from Assumptions 2 and 3 in

Berry and Haile (2022).

Assumption INV-DEMAND (Invertibility of demand). The function σ(·, st) is injective

on the support of (wit, ξt) | st almost surely.

Assumption INV-INDEX (Invertibility of index). The function g : suppwit → RJ is

injective.

The model requires several normalizations to achieve identification. First, I impose E[ξt] = 0

to rule out nonidentification due to the shifting of a constant between ξt and g. Second, I

impose that g(w0) = 0 for a known value w0 ∈ suppwit. As a scale normalization, I impose

Dg(w0) = I, where D denotes the derivative operator. These last two normalizations are

analogous to equations (7) and (8) in Berry and Haile (2022).

I additionally require the availability of variables zt that satisfy the validity and relevance

3See Berry and Haile (2022) for a treatment of additional individual characteristics, which they denote by
Yit.
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conditions required of instruments for market shares. These assumptions are the standard

exclusion restriction and completeness condition of Newey and Powell (2003).

Assumption NPIV-EX (Exclusion restriction for NPIV). E[ξt|zt] = 0 (almost surely).

Assumption NPIV-C (Completeness condition for NPIV). For all real-valued functions ∆

such that E|∆(st)| <∞, E[∆(st)|zt] = 0] (almost surely) implies ∆(st) = 0 (almost surely).

Work on the identification of discrete-choice models often assumes that vectors of so-called

“special regressors” are supported on the entirety of the relevant Euclidean space. Berry

and Haile (2022) use an alternative and less restrictive assumption that serves a similar

purpose in their identification proof. Assumption CPROB adapts this assumption to my

setting. Additionally, Berry and Haile (2022) impose a nondegeneracy condition on the

demand unobservables ξt that I adapt in Assumption NOND.

Assumption CPROB (Common choice probabilities). There exists a choice probability

vector s∗ such that s∗ ∈ supp sit|{s, ξ}, which is the support of sit conditional on st = s and

ξt = ξ, for all (s, ξ) ∈ supp(st, ξt).

Assumption NOND (Nondegeneracy). There exists s ∈ supp st such that supp ξt | st = s

contains an open subset of RJ .

I provide some other technical conditions (TECH) and the proof of the following proposition

in Appendix C.3.

Proposition 3. Suppose that Assumptions INV-DEMAND, INV-INDEX, NPIV-EX, NPIV-

C, CPROB, and NOND hold. Also suppose that the technical conditionals TECH hold. Then,

g is identified on the support of wit, σ is identified on the support of {δ(wit, ξt), xt, st}, and

ξt is identified for all t.

The identification argument underlying Proposition 3 is nearly identical to that in Berry and

Haile (2022) with the exception that it involves instrumenting for st rather than an endoge-

nous product characteristic. My preferred way to construct the instruments zjt appearing in

Assumptions NPIV-EX and NPIV-C is to use cross-market variation in distributions of con-

sumer characteristics wijt. One example is zt = Et[wit], the mean value of wit in market t. In

the context of the semi-parametric specification outlined by Section 3, another candidate in-

strument vector zt = [z1t, . . . , zJt] has components zjt = Prt(w
′
itλj +εijt = maxk w

′
itλk+εikt)

equal to the predicted shares of products j in market t when all market-level shifters (i.e.,

xjt, st, and ξt) are removed from the utility equation. As long as Fwt is suitably independent

of ξt, these instruments will satisfy Assumption NPIV-EX. Unless Jt = 1, exogenous char-

acteristics of other products are also available as instruments. See Section 4.4 for additional

discussion of available instruments.

The argument used to identity the demand model in which market shares shift choice prob-

abilities with microdata is straightforwardly adapted to the case in which total sales Mtst

shift choice probabilities. One needs only replace st with Mtst where it appears in the
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choice probability function. In this case, Mt becomes available as an instrument as long as

it satisfies Assumptions NPIV-EX and NPIV-C.

4.4 Discussion of identification results

I now discuss my identification results in comparison to related research. Bayer and Tim-

mins (2007) consider the estimation of a discrete-choice model with network externalities by

applying an instrumental variables approach to microdata. In their model, consumer choice

probabilities depend on market shares rather than total quantities. Timmins and Murdock

(2007), who follow the approach described by Bayer and Timmins (2007), use BLP instru-

ments in estimating network externalities. This approach is suitable for the empirical setting

of Timmins and Murdock (2007) in which there is a single market and therefore no possibility

of using instruments that exploit cross-market variation. My identification analysis formally

establishes the validity of the approaches used by Bayer and Timmins (2007) and Timmins

and Murdock (2007) under exogeneity and completeness conditions on the BLP instruments.

Additionally, my analysis shows how Timmins and Murdock (2007) could obtain additional

instruments if they used data from multiple markets in their analysis.

My identification analysis also relates to the instrumental variables used by Guiteras et al.

(2019), who model demand for latrines in Bangladeshi villages using a discrete-choice model

with network externalities, They estimate this model with data from a randomized control

trial that provided latrine subsidies to a random subset of households in their sample that

included randomization across neighbourhoods and villages in subsidy eligibility rates. Gui-

teras et al. (2019) use the share of households eligible for subsidies in a neighbourhood as an

instrument for the share of households buying latrines in that neighbourhood. These instru-

ments are examples of the instruments based on market-specific distributions of consumer

characteristics that I consider in my identification analysis. My paper expands upon the

identification insight of Guiteras et al. (2019) by showing that demographic characteristics

not directly related to a characteristic of the analyzed product can aid in identifying network

externalities.

Instruments based on market-specific distributions of consumer characteristics, which I em-

phasize in my identification analysis and which are used by Guiteras et al. (2019), are coined

Waldfogel instruments by Berry and Haile (2016) in response to the insights of Waldfogel

(2003) and Waldfogel (2008) that the local demographic profile influence consumers’ choice

sets. As noted in Section 4.1, there are several ways that the Waldfogel instruments could

fail to satisfy the exclusion restriction in the dating website application. These include (i)

the possibility that firms provide higher quality ξjt in markets with favourable demographic

profiles, (ii) consumers choose their geographical markets based on the local quality of their

preferred products, and (iii) the presence of contextual network externalities by which the

local demographic profile directly affects tastes for products.4

4Another challenge associated with Waldfogel instruments is that they become weaker as the researcher
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My analysis of models in which total quantities rather than market shares enter choice prob-

ability functions shows that these types of models have similar identification properties. One

difference is that, in the total quantities model, the market size is available as an instru-

mental variable under a standard exclusion restriction. This exclusion restriction is strong:

it requires that consumer tastes do not differ between markets of different sizes (e.g., large

cities versus small towns) conditional on other observable market and consumer characteris-

tics. Another difference is that cross-market variation in market size can separate the direct

and indirect effects of market characteristics under plausible buy strong assumptions. This

is true even in the market data setting. Proposition 2 provides these strong assumptions,

one of which is the case in which we can take a limit as the market size goes to zero. In this

case, network externalities and the indirect effect mentioned above vanish, which allows the

direct and indirect effects to be separately identified.

5 Estimation

Estimation of the model proceeds in two steps. In the first step, which I call the microstep, I

estimate mean tastes for each site in each market among each demographic group in addition

to the contribution of consumer characteristics to tastes for particular sites. In the second

step, which I call the market step, I estimate the contribution of site characteristics and

market shares to mean tastes for sites. Although estimating all parameters simultaneously

may introduce efficiency gains, such an estimator is likely to be difficult to compute in prac-

tice. The estimator that I outline, in contrast, involves two simple estimators (a maximum

likelihood estimator of a logit model and a two-stage least squares estimator) that do not

entail a serious computational burden.

5.1 Asymptotic assumptions

Before outlining my estimation procedure, I provide notation and asymptotic assumptions

under which I conduct inference. I write the data as

Dk = {Dit : 1 ≤ i ≤ Nk
t , 1 ≤ t ≤ T k},

where k is an index that tends to infinity in my asymptotic analysis and Dit is a vector

containing all observables pertaining to individual i in market t. I assume that, within each

market t and for all k, Dit ∼iid Ψt for a distribution Ψt. My primary asymptotic assumptions

specifies increasingly narrow demographic groups. Waldfogel instruments rely on variation within subpopu-
lations of markets belonging to particular demographic groups to shift market shares within these subpop-
ulations. Defining narrow demographic groups limits variation within these subpopulations. To fix ideas,
consider a case in which there are two demographic groups, call them young and old. The proportion of a
market that is young shifts the product’s market share across markets. But, when the only market shares
that the consumer cares about are those within her own age group, the proportion of a market that is young
does not shift the market share of the product among consumers that are young. Therefore, the Waldfogel
instrument computed as the proportion of young consumers in the market is irrelevant in this case.

26



are

T k
k↑∞−−−→∞

Nk
t /T

k k↑∞−−−→∞.

That is, I assume that the number of markets T k tends to infinity and the number of obser-

vations within each market, Nk
t , also tends to infinity. This latter assumption is reasonable

in settings such as my own in which the number of individuals in the microdata within each

market is large. Last, I assume that the number of platforms J is fixed (i.e., it does not

depend on k).

5.2 Microstep

The estimating equation of the microstep is

uijt = δ
d(i)
jt + w′ijtλ+ εijt, (13)

where δdjt are mean tastes for site j among members of demographic group d in market t

and wijt are interactions of consumer characteristics with indicators for various sites j. Last,

εijt is assumed to follow a type 1 extreme value distribution. I estimate the parameters δdjt
and λ of (13) via maximum likelihood. Note that the microstep is the same for each of the

share-type and quantity-type models.

5.3 Market step

The estimating equation of the market step of the share-type model is

δdjt = x′jtβ + fdj
(
sot , s

1
t , . . . , s

D
t ; γ

)
+ ξdjt. (14)

See Section 3 for a description of the terms appearing in this equation. The fdj function,

which I call the network externality function, is known up to the finite-dimensional parameter

vector γ. Given that δdjt is not directly observed, I substitute estimates of this quantity from

the microstep for the true quantity in the actual estimation routine. I similarly substitute

in estimates of the market shares computed using the Comscore data for the true market

shares. The xjt are firm-time period indicators whose coefficients I denote by ψj so that

x′jtβ = ψj . Last, I estimate (14) using several different parametric forms of the network

externality function fdj (·; γ), as I state explicitly in Section 6.

I use excluded instruments to consistently estimate fdj given that market shares generally

correlate with ξdjt. For each market share appearing in (14), I compute the predicted value

of the market share based on the microstep estimates when (i) δdjt = 0 for all j, t, d and (ii)

certain effects of individual characteristics wijt are also set to zero. These predicted values,
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which I use as instruments for the estimation of network externalities, are examples of the

Waldfogel instruments discussed by Section 4.4. I apply the same transformation to the

predicted market shares when constructing the instruments as I do to the market shares

when entering them into (14). To illustrate, suppose D = 1 and the specific estimating

equation is

δjt = x′jtβ + γ log(sjt) + ξjt.

Then, the excluded instrument I use is

zjt = log

(
1

Mt

Mt∑
i=1

ew̃
′
ijtλ

1 +
∑

k e
w̃′iktλ

)
,

where Mt is the sample size of consumers in market t and w̃ijt is a vector including a subset of

the individual characteristics wijt. I similarly construct instruments for other specifications.

As noted in my discussion of identification, Waldfogel instruments based on characteris-

tics whose market-specific distributions directly affect consumer tastes violate the exclusion

restriction required for these instruments to identify the model. Markets’ distributions of

characteristics including age, race, and education may directly affect taste for dating websites

because people may directly value these characteristics in potential mates. The distribution

of these traits in the population in a market may thereby shift people’s desire to engage in

dating, whether online or offline. With this potential failure of Waldfogel instruments in

mind, I choose characteristics to include in w̃ijt whose market-specific distributions are least

likely to directly affect consumers’ tastes. These include an indicator for whether consumer i

has broadband internet and the characteristics describing consumer i’s internet usage.

In practice, I use estimates of the platform/market utility indices δjt from the microstep of

my estimation procedure rather than the true values of these indices in estimating (14). Sam-

pling error in estimation of δjt is asymptotically irrelevant, however, under the maintained

assumption that and the number of observations within each market t tends to infinity. I

also enter estimates ŝjt in place of the market shares sjt in (14). These estimates, which are

empirical choice frequencies from my estimation sample, are also mismeasured on account of

sampling error. This measurement error is both asymptotically irrelevant under my main-

tained asymptotic assumptions, and also rectified in a finite sample by instrumenting sjt

with zjt.

The market step of estimating a quantity-type model proceeds similarly. For the quantity-

type model, quantities replace market shares in (14) and predicted quantities are used in

constructing instruments instead of predicted market shares.

5.4 Price sensitivity

To this point, I have ignored price competition between firms. Estimating consumer price

sensitivity is important for computing pricing equilibria in counterfactuals and for expressing
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welfare figures in dollar terms. But the fact that the dating websites in my sample charge

uniform prices across geography means that I observe minimal price variation, which pre-

vents me from estimating price sensitivity the alongside other parameters of the consumer

choice model. Instead, I use my choice-model estimates and a model of price competition to

estimate price sensitivity in an auxiliary estimation procedure. As previously mentioned, I

use site/time indicators as the xj in (14) and let ψj denote the fixed effect for site j. I then

make the decomposition ψj = ψ̄j −αpj and assume that the observed prices {p∗j} constitute

a Bertrand-Nash pricing equilibrium with marginal costs of zero in that

p∗j = arg max
pj

∑
t

Mtσjt(pj , p
∗
−j ;α)pj ∀j s.t. p∗j > 0. (15)

The profit maximization problem in (15) gives rise to the first-order conditions (FOCs)

∑
t

[
Mt

∂σjt
∂pj

(p∗j , p
∗
−j ;α)p∗j + σjt(p

∗
j , p
∗
−j ;α)

]
= 0 (16)

which provided the basis of my estimation of α.

To compute my estimator α̂ of α, I substitute empirical analogues/estimates for population

objects/parameters in each paid site’s FOC (16) and then solve for α. These FOCs include

price derivatives of market shares, which are not well defined without an assumption on

how prices affect equilibrium selection in the presence of multiple equilibria. I assume that

firms believe their market shares at counterfactual prices are given by the equilibrium surface

around (χt, st) as defined in Section 3.1, where χt includes firms’ prices in market t. I then

use the price derivatives of this equilibrium surface as the price derivatives appearing in the

FOCs underlying my estimation of α. The implicit function theorem provides an explicit

form for these derivatives. Each derivative ∂σjt/∂pj reflects two effects of price on market

shares: a direct effect of price on consumers’ likelihoods of purchasing product j and an

indirect effect reflecting that the direct effect changes product j’s market share which in

turn affects the network externality term in product j’s indirect utility. Some of the sites in

my sample are free to use. I do not include these sites’ FOCs in the estimation of α and I

assume that free sites remain free in my counterfactuals. Each paid site’s FOC provides a

separate estimate of α; my final estimator α̂ is the average of these site-specific estimates.

I compute standard errors for α̂ using a parametric bootstrap that involves sampling from

the estimated asymptotic distribution of the the parameters estimated in the market step of

estimation. I include additional details on the estimation of α in Appendix D.

I check whether α̂ is a reasonable estimator by considering its implications for a price response

to monopolization. Section 7.4 considers a counterfactual in which match.com becomes a

monopolist. Under estimates of my preferred specifications, match.com raises its price by

30.5% upon becoming a monopolist (see Table 16); this magnitude seems sensible.
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6 Parameter estimates

This section reports and discusses my parameter estimates. I estimate the model using two

different specifications of demographic groups:

(Overall) All consumers belong to the same demographic group.

(Age) Consumers under the age of 35 belong to the first demographic group and all other

consumers belong to the second demographic group.

I also estimate the model using several different specifications of the network externality func-

tion discussed in Section 5.3. The sites that consumers choose between are eharmony.com,

match.com, okcupid.com and pof.com; choices to use other sites and a failure to use any

site are grouped together in the outside option. The microstep of estimation involves a large

number of parameters whose presentation I relegate to Appendix E; see Tables 18 through

21. Many of the estimated parameters indicate significant taste differences across individuals

with different observable characteristics.

Panel A of Table 6 displays the parameter estimates of an share-type model with the “Over-

all” demographic specification and the network externality function specification fj(st; γ) =

γ log(sjt). Instrumenting for market shares with the demographic instruments decreases the

estimated coefficient of the network externality term relative to OLS. This reflects the fact

that the unobservables ξjt and market shares sjt are positively correlated. Panel A also

reports my estimate of α for this specification. Note that the rows with names of dating

websites (e.g. “eharmony”) provide the estimated site intercepts.

Panel B reports reports the first stage of the IV regression whose results are displayed in

Panel A; in particular, it shows the results from a regression of ˜log(sjt) on z̃jt, where ζ̃jt

denotes the residual of a regression of ζjt on the site-time indicators that are included as

exogenous regressors in Panel A’s IV regression. The first stage is strong with an F statistic

of 8.3, indicating the relevance of my instruments.

Tables 7 reports estimates from the “Age” demographic group specification under various

specifications of the network externality function. In particular, column (1) of each table

reports estimates from a specification in which consumers care only about the market share

of a site within their own demographic group; column (2) reports estimates from a specifi-

cation in which a consumer’s tastes depend on the market share of a site within their own

demographic group and the other demographic group; column (3) reports estimates from a

specification in which a consumer’s tastes depend on the market share of a site within their

own demographic group only, but members of different demographic groups have different

preferences for their own-group market shares; and column (4) reports estimates from a spec-

ification in which a consumer’s tastes depend on the market share of a site both within their

own demographic group and within the entire population. These tables suggest considerable

homophily within groupings defined by age, as consumers more highly value market shares

within their own age group than shares within the other group. Column (3) suggests that the
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Table 6: Market step parameter estimates – “Overall” demographic group specification

Panel A: Parameter estimates

OLS IV

log(sjt) 0.99 0.68
(0.02) (0.15)

eharmony 0.13 -0.59
(0.05) (0.34)

match -0.78 -1.28
(0.04) (0.24)

okcupid -3.34 -4.71
(0.10) (0.65)

pof 0.48 -0.50
(0.07) (0.47)

pj (α̂) 0.0102
(0.0041)

Panel B: First stage of IV regression

˜log(sjt)

z̃jt 0.94
(0.32)

F 8.34

strength of network externalities is similar within each demographic group—i.e., that there

is not considerable heterogeneity in tastes for market shares between groups—although the

own-group tastes for the older age group are not precisely estimated.

We can use the results presented above to compute the value of an increase in a site’s usership

to an inframarginal of the site in dollar terms. The estimates for the market shares model

presented in Table 6 imply that a 10% increase in the usership of a site is worth $6.34 a

month to an inframarginal user of that site whereas the estimates for the total quantities

model presented in Table 8 imply that a 10% increase in the usership of a site is worth $6.67

a month to an inframarginal user of that site. Given that match.com’s monthly subscription

price in 2007 was $34.99, a 10% increasing in match.com’s usership in a particular market

would be worth 18% of the site’s price to an inframarginal match.com user under estimates

of the market share model and 19% under estimates of the total quantities model.

7 Counterfactual analysis

I use my estimated model to decompose cross-market variation in market shares and to assess

the effects of changes in the market structure of the dating websites industry. The model

estimates that I use in this analysis are those for the model without distinct demographic

groups that include market shares rather than total quantities as utility shifters; see Tables
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Table 7: Market step parameter estimates – “Age” demographic group specification

(1) (2) (3) (4)

Own-group log
(
sdjt

)
0.519 0.579 - 0.032

(0.138) (0.218) - (0.551)

Other-group log
(
sd
′
jt

)
- -0.049 - -

- (0.218) - -

Own-group log
(
syoungerjt

)
- - 0.607 -

- - (0.189) -

Own-group log
(
solderjt

)
- - 0.406 -

- - (0.181) -

log
(
soveralljt

)
- - - 0.757

- - - (0.634)

pjt (α̂) 0.0027 0.0027 0.0031 0.0014
(0.0007) (0.0184) (12.4134) (0.0028)

Table 8: Market step parameter estimates – “Overall” demographic group specification,
quantity-type model

Panel A: Parameter estimates

OLS IV

log(Mtsjt) 0.98 0.69
(0.02) (0.14)

log(Mt) -0.98 -0.72
(0.02) (0.12)

eharmony 0.07 -0.23
(0.16) (0.28)

match -0.84 -0.92
(0.16) (0.24)

okcupid -3.41 -4.31
(0.18) (0.49)

pof 0.41 -0.13
(0.17) (0.35)

pj (α̂) 0.0099
(0.0043)

Panel B: First stage of IV regression

˜log(sjt)

z̃jt 0.97
(0.32)

F 9.12
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18 for the microstep estimates and 6 for the market step estimates. I compare outcomes

in equilibria under counterfactual market environments with outcomes in equilibria under

the baseline market environment, i.e., the observed non-price website characteristics and

market structure. The prices in the baseline equilibrium to which I compare counterfactual

equilibrium constitute a Bertrand-Nash pricing equilibrium; I do not impose the observed

prices on this baseline equilibrium. Given that each dating website charges a single nation-

wide price in my data, I constrain each website’s price to be constant across markets when

computing equilibria.

I consider how changes in market structure affect consumer welfare but on website profitabil-

ity throughout this section. As I elaborate upon in a subsequent section, the two primary

effects on consumer welfare that I consider are price response effects and network externality

effects. The former are defined as dollarized differences in expected utility between coun-

terfactual equilibria with and without price responses. The latter are defined as differences

in consumer enjoyment of network externalities between counterfactual equilibria with price

responses and baseline equilibria. Overall differences in expected consumer utility between

baseline and counterfactual equilibria also depend on changes in the realized εijt idiosyncratic

taste shocks of consumers’ realized choices. Some of the counterfactuals that I consider re-

move websites from the market, which mechanically lowers expected utility in a way that

is highly dependent on the assumed distribution of the εijt shocks. Other counterfactuals

adjust consumer utilities for websites; these adjustments also mechanically affect welfare. To

avoid these two sorts of mechanical effects from influencing my headline welfare results, and

to highlight the roles of price responses and network externalities, I measure overall welfare

effects using the sum of the price response effects and network externality effects rather than

differences in expected utility.

I compute the equilibria described in this section using a nested iterated best response

algorithm. This algorithm is nested in the sense that it (i) iterates on market shares in an

inner loop to find a fixed-point of the market share function for a particular vector of prices

and (ii) then iterates on prices in an outer loop to find a price vector such that each firm’s

price maximizes its own profits given the other firm’s price.

The first counterfactual analysis that I consider facilitates a decomposition of cross-market

variation in market shares into parts depending on network externalities and on taste het-

erogeneity. Next, I marginally adjust the characteristics of some dating websites to assess

the effects of the emergence of a niche site and of increased concentration in the market for

dating websites. As noted by Section 3.1, it is generally difficult to compute the effects of

counterfactual changes in market characteristics when there is a multiplicity of equilibria.

This is because these effects will depend on which equilibrium is selected under the counter-

factual market characteristics. I argued in Section 3.1 that the concept of local uniqueness of

equilibria allows us to define a coherent concept of marginal effects of a market characteristic

on outcomes. These marginal effects are the gradients of equilibrium surfaces (defined in Sec-

tion 3.1) with respect to market characteristics. In practice, I check that the counterfactual
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equilibrium market shares I obtain are close to the baseline market shares and conclude that

they fall on the same equilibrium surface as the baseline market shares if this is indeed the

case. Last, I interpret differences between outcomes in counterfactual equilibria and baseline

equilibria as the marginal effects of market characteristics on these outcomes.

I also study the effects of making match.com a monopolist. The problem of multiplicity of

equilibria under network externalities arises because consumers who enjoy sharing a platform

with other consumers may cluster on one dominant site whose identity is indeterminate (i.e.,

which site is most popular may differ across equilibria). This problem does not arise when

there is only one site.

7.1 Decomposition of variance in market shares

I decompose the variation in market shares across markets into three sources: network ex-

ternalities; unobserved differences in taste across markets; and observed differences in tastes

across markets reflecting demographic differences. Table 9 displays the results of this de-

composition. For each regime, I compute the standard deviation of market shares across

geographies. I subtract sites’ average shares across markets from their market shares to

ensure that the reported standard deviations capture variation across markets and not vari-

ation across sites. For the “No net. ext.” column, I remove the network externality function

from consumers’ indirect utilities and re-compute market shares in each market. Note that

eliminating the network externality function from indirect utilities changes the mean quality

of each site and hence changes the market share of the outside good. Thus, I add a constant

f † to each site’s mean utility δjt, where f † is chosen so that the market share of the outside

good under the model without network externalities is equal to the observed market share

of the outside good. For the “No ξjt” column, I set all of the market-level mean unobserved

taste unobservables ξjt to zero. For the “No demo” column, I compute each market’s market

shares using the distribution of demographic characteristics across all markets in my sample

instead of the market’s own distribution of demographic characteristics.

Table 9 tells us that network externalities explain most of the variation in market shares

across geographical markets. Indeed, removing market shares from consumers’ indirect util-

ities reduces the cross-geography market share standard deviation by 58%. The table also

tells us that unobserved differences in tastes across geography play a smaller but nonetheless

significant role in explaining market share variation. Last, differences in tastes linked to

observed demographic characteristics play a smaller but not insubstantial role; their con-

tribution to variation in market shares across geographies is crucial for my instrumental

variables approach to the identification of network externalities.
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Table 9: Decomposition of geographic variation in market shares

No net. ext. No ξjt No demo.

Share of baseline SD 0.44 0.25 0.00
∆ 0.56 0.19 0.25

7.2 Increase in market concentration counterfactual

I now assess the effects of increasing market concentration on prices and welfare. In par-

ticular, I increase the value of match.com, the most popular site in my data, by $2.00 for

all consumers while decreasing the value of eharmony.com, the second most popular site,

by the same amount. I focus on welfare in the eight most populous markets in my data;

Table 10 gives the market shares of the two most popular dating websites, eharmony.com

and match.com, under the baseline pricing equilibrium. Note that “New York (NY)” and

New York (NJ)” appear as distinct markets because I intersect CSA boundaries with state

boundaries when defining my markets; see Section 2 for details.

To adjust the values of match.com and eharmony.com, I increase each δjt index for match.com

by 2 × α̂ and decrease each δjt index for eharmony.com by the same amount. Adjusting

these indices mechanically changes the utilities enjoyed by sites’ inframarginal consumers

absent any responses by sites or consumers. To ensure that my welfare results do not reflect

these mechanical effects, I present only the welfare changes from price responses and from

changes in realized network externalities. I define the price response effect as the difference

in expected consumer utility between (i) a counterfactual equilibrium in which sites adjust

their prices from the baseline equilibrium and (ii) a counterfactual equilibrium with prices

fixed at their baseline levels. I define the network externality effect as the expected change

in the network externality term in the indirect utility of the consumer’s selected site between

the counterfactual equilibrium with price adjustment and the baseline equilibrium. In the

above, expected consumer utility refers to the expectation of maxj uij over both εij and

consumer characteristics wij . Also, when the consumer selects the outside option, I take it

that the network externality term for the consumer’s choice is zero. I measure the net effect

of the counterfactual change on expected utility as the sum of the price response effect and

the network externalities effect. Note that this net welfare change does not capture changes

in the expected logit shock of the consumer’s selected platform.

Table 11 reports the distribution of counterfactual market changes. In particular, it displays

various quantiles of the distribution of market-share changes (in percentage points) taken

across markets. This table shows that market shares change only marginally in response to

the small counterfactual changes in values to consumers, which suggests the counterfactual

equilibria belong to the same equilibria surfaces as the baseline equilibria.

Table 12 displays price effects whereas Figure 4 reports welfare effects (in dollars) for several

of the largest markets in the analysis. Figure 4 and Table 10 show that, among the most

populous markets, the net welfare changes from increasing market concentration are negative.
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Table 10: Market shares in top markets under the baseline equilibrium

Market match.com eharmony.com

New York (NY) 0.155 0.135
Los Angeles (CA) 0.146 0.136
New York (NJ) 0.143 0.128
Miami (FL) 0.177 0.132
Chicago (IL) 0.140 0.159
Atlanta (GA) 0.135 0.183
San Jose (CA) 0.165 0.146
Dallas (TX) 0.144 0.138

Table 11: Market share changes in the increase concentration counterfactual

Quantiles of market share changes (%)
Site 0.01 0.25 0.50 0.75 0.99

eharmony.com -0.7433 -0.6067 -0.6067 -0.5360 -0.4495
match.com 0.4210 0.5209 0.5209 0.5923 0.7214
okcupid.com -0.0092 -0.0038 -0.0038 0.0004 0.0038
pof.com -0.0142 -0.0038 -0.0038 0.0091 0.0260

These negative effects reflect price increases at match.com and, in most markets, decreases

in benefits from network externalities suffered by inframarginal users of eharmony.com. In

Miami, where match.com has an especially high baseline market share, the average benefit

from network externalities increases in the counterfactual, which partially offsets the negative

effect of match.com’s price increase on welfare. In Section 7.1, I found that much of the

variation in website market shares across markets owes to network externalities. Thus,

although network externalities imply greater market concentration for a leading firm can

be welfare-increasing, they also induce variation in the identity of the leading firm across

geography, which in turn implies heterogeneity across geography in the effects of boosting

the national market leader on realized network externalities.

7.3 Emergence of a niche site counterfactual

Network externalities imply that the emergence of a site appealing to a subpopulation of

consumers can harm inframarginal users of a popular website with broad appeal by drawing

members of this subpopulation away from the popular site. I now consider a counterfactual

that assesses whether this harm is enough to make the emergence of a niche site undesirable.

Table 12: Price changes in the increase concentration counterfactual

Site Baseline Counterfactual Difference

eharmony.com 44.20 43.57 -0.63
match.com 44.66 45.33 0.67
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Figure 4: Welfare changes in the increase concentration counterfactual

Table 13: Market share changes in the niche site counterfactual

Quantiles of market share changes
Site 0.01 0.25 0.50 0.75 0.99

eharmony.com -0.0235 -0.0149 -0.0149 -0.0087 -0.0023
match.com -0.0255 -0.0153 -0.0153 -0.0079 -0.0017
okcupid.com -0.0031 -0.0016 -0.0016 -0.0009 -0.0006
pof.com 0.0209 0.0410 0.0410 0.0648 0.0949

This counterfactual involves marginally increasing (by $10) the appeal of pof.com to con-

sumers with college degrees and advanced degrees. In assessing the welfare effects of these

changes, I use the measures of price response effects, network externality effects, and net

effects that I introduced in the preceding subsection.

Table 13, Table 14, and Figure 5 are the analogues of Table 11, Table 12, and Figure 4 for

this “niche site” counterfactual. Increasing the appeal of pof.com increases each component

of average welfare. Note that utility from network externalities increases because the infra-

marginal users of pof.com benefit more from the new users who join the site (many of whom

did not use any dating website before) than the inframarginal users of the other sites suffer

from these sites’ decreases in usership upon the increase in pof.com’s appeal. This increase

in welfare from network externalities is compounded by an increase in utility from the leading

sites’ price responses; pof.com’s increase in appeal to highly educated consumers makes the

market for dating websites more competitive and induces eharmony.com and match.com to

lower their prices.
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Table 14: Price changes in the niche site counterfactual

Baseline Counterfactual Difference

eharmony.com 44.20 44.18 -0.02
match.com 44.66 44.64 -0.02

Figure 5: Welfare changes in the niche site counterfactual

7.4 Monopoly counterfactual

I now consider a counterfactual in which match.com becomes a monopolist. The first two

rows of Table 15 compare market shares in this counterfactual to baseline market shares

whereas Table 16 provides the change in match.com’s price. To summarize, match.com

increases its prices in the absence of competition with other dating websites and nonetheless

increases its market share. This increase in market share benefits match.com’s inframarginal

users by increasing their utility from network externalities. Last, Figure 6 provides welfare

changes associated with the counterfactual monopolization in the most populous markets.

The reported effects are the same as those introduced in Section 7.2. The results displayed

by Figure 6 imply that monopolization decreases average welfare by $3.00–$4.53 across the

most populous markets. Net welfare losses, which owe to The monopolist website’s price

increase is responsible for the negative overall effect of monopolization, although consumer

welfare losses from this price increases are partially offset by increased enjoyment of network

externalities under monopoly.

7.5 Profitability of website integration

I conclude my counterfactual analysis by comparing a scenario with only two dating websites—

eharmony.com and match.com—that are jointly owned but not integrated with a scenario
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Table 15: Market share changes in the monopoly counterfactual

eharmony.com match.com okcupid.com pof.com Outside option

Baseline 0.150 0.147 0.012 0.040 0.651
Monopoly 0.000 0.191 0.000 0.000 0.809
Joint ownership 0.124 0.121 0.000 0.000 0.755

Table 16: Price change for match.com in the monopoly counterfactual

Quantity Value

Baseline $44.66
Counterfactual $58.28
Change 30.5%

Figure 6: Welfare changes in the monopoly counterfactual
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Table 17: Price change in the joint ownership counterfactual

Quantity Value Value

Baseline $44.20 $44.66
Counterfactual $65.50 $66.48
Change 48.2% 48.9%

in which match.com is a monopolist. The latter scenario corresponds to one in which the

joint owner of eharmony.com and match.com decides to integrate the former website into

the latter. Table 15 compares market shares under the joint ownership and monopoly (i.e.,

integration) scenarios when prices are set to optimize total dating website profits in each

case. The sum of market shares for dating websites is higher under joint ownership without

integration, although match.com’s share is predictably lower under joint ownership. Table

17 compares prices between the two scenarios; it shows that the firm enacts greater price

increases under non-integration. This is because a price increase at one website leads con-

sumers to divert to the firm’s other website, which mitigates the firm’s overall sales losses

from price increases. The firm’s profits are 31% lower in the monopoly scenario relative to

the joint ownership scenario. The fact that the firm’s profits fall upon integration partly

reflects significant horizontal differentiation of websites, which is evident from the coexis-

tence of several dating websites with sizeable market shares in my data. This differentiation

implies that a multi-website firm loses many of a website’s users upon abolishing the site: in

my counterfactual analysis, the combined market share of the firm’s sites falls from 24% to

19%. One benefit to the firm of removing a website is that this removal provides the firm’s

other website with a higher market share, which in turn increases consumers’ willingnesses

to pay for this site. Offering differentiated sites, however, allows the firm to support higher

prices than a single site with higher market share can command.

8 Conclusion

This paper analyzes the identification properties of a discrete-choice model with network

externalities and uses such a model to study the market for dating websites. I use the model

to assess the extent to which increased market concentration would benefit consumers who

enjoy using the same platform as others. I find that network externalities are substantial

and account for most variation in sites’ market shares across geography in the United States.

Additionally, neither marginally increasing market concentration or monopolizing the dating

website market boosts average consumer welfare: in both cases, any benefits from increased

enjoyment of network externalities are more than offset by harms from price increases.
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A Microfoundation for network externalities on dating websites

This appendix provides a model of search and matching on a dating website that justifies the

inclusion of a network externality term in consumer payoffs from using dating websites. This

model is a variant of that proposed by Smith (2006); the model features a mass L of users of

a dating website, each of whom finds matches on the site at an exponential rate ρ. Matches

are exogenously destroyed at rate δ. Each user’s payoffs are discounted at the interest rate

r. The flow value of a match between agents i and j is fij and the flow value of remaining

unmatched is zero. I assume that fij are identically and independently distributed across

pairs (i, j) from the distribution F . Let η = Pr(fij > 0) and let µf = E[fij |fij > 0]. Suppose

that consumer i immediately forms any match that yields a positive flow value fij and does

not account for the option value of waiting for a better match. The average present value5

of being unmatched is

Vu =
ρη2

r

∫
[Vm(f)− Vu]dF (f | f > 0), (17)

where u ≤ L is the mass of unmatched users and Vm(f) is the average present value of being

matched with match value f :

Vm(f) = f +
δ

r
[Vu − Vm(f)]. (18)

We can solve (18) to obtain

Vm(f) =
rf + δVu
r + δ

and then solve (17) to obtain

Vu =
η2uµf
ψ + η2u

, (19)

where ψ = (r + δ)/ρ is a measure of the search frictions in the market. The steady-state

value of u is given by the condition

δ(L− u) = ρη2u2,

which equates inflows to and outflows from the population of unmatched users. Solving for

u yields

u =

√
δ2

4(η2ρ)2
+

δ

η2ρ
L− δ

2η2ρ
.

We can substitute this expression for u into (19) to obtain an expression for the value of

being unmatched as a function of the mass of users L on the platform and of other model

primitives; this expression is increasing in L. Figure 7 plots the relationship between Vu and

L under the choice of parameters ρ = 0.5, δ = 0.5, µf = 1, η = 1, and r = 0.10. The positive

relationship between L and the consumer’s value of joining the platform as an unmatched

5The average present value is defined as the net present value times the interest rate r.
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Figure 7: Relationship between platform usage and value

user justifies the inclusion of a network externality term in the indirect utilities of the model

considered in the main text.

B Discussion of locally unique equilibria

This appendix discusses the concept of local uniqueness of equilibria as proposed in Section

3.1. Recall the condition that (4) must be nonsingular to ensure local uniqueness; I analyze

this condition in the context of a binary logit model with positive network externalities.

Figure 8 illustrates this model under two distinct values of the market characteristics χt.

Equilibria in this model correspond to intersections between the s-shaped curve representing

the mapping s 7→ σt(δt(s)|χt) and the 45-degree line. I interpret χt as the good’s exogenous

vertical quality; in the figure, decreasing χt from χ to χ′ shifts the s-shaped curve downward

until the equilibria s2 and s3 collapse into a single equilibrium s′2. The matrix (4) is singular

in this illustrative model when σt(δt(·), χt) is tangent to the 45-degree line, as happens when

χt = χ′ at the equilibrium s′2. We cannot define a unique equilibrium surface around (χ′, s′2)

because there are two distinct equilibrium market shares nearby s′2 when we marginally

increase χt and no equilibrium market share near s′2 when we marginally decrease χt. This

illustration suggests that local uniqueness will fail only in knife-edge cases.
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Figure 8: Multiple equilibria in a binary choice model with network externalities

C Identification appendix

C.1 Identification with market data using restrictions on network externalities

It is possible to establish identification with market data by significantly restricting the

form of network externalities. Assumption SEPSHARE provides one way to restrict network

externalities that helps with identification.

Assumption SEPSHARE (Separability of market share). For each j ∈ J , there is a

function g̃j : ∆J → R such that

δj(xt, st, ξt) = αsjt + gj(xjt) + ξjt,

where α ∈ {−1, 1} is known by the researcher.

Note that the restriction of α to the set {−1, 1} is a scale normalization. The following

assumption permits the application of a nonparametric instrumental variables argument to

identify the model.

Assumption NPIV-MARKET (NPIV for market data). Suppose J > 1. Let zjt = x−jt,

i.e., a vector of all characteristics of products in market t excluding those of product j. These

characteristics satisfy the following conditions for each j ∈ J :

(i) Exclusion restriction: E[ξjt|zjt] = 0

(ii) Completeness condition: for all real-valued functions Γ such that E|Γ(st, xjt)| < ∞,

E[Γ(st, xjt)|zjt] = 0 (almost surely) implies Γ(st, xjt) = 0 (almost surely).

Assumption NPIV-MARKET establishes characteristics of other products—that is, the BLP
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instruments—as valid instruments in my setting. Suppose that each xjt has dimension dx.

This implies that the dimension of zjt is (J−1)×dx, whereas the number of market shares is

J . Therefore, dx > 1 is required for the number of instruments to weakly exceed the number

of market shares for which I seek instruments.

The following proposition characterizes identification under the assumptions above. The

proposition’s statement places an additional differentiability restriction on the inverse market

share function σ̄−1; note that this inverse exists by Assumption INVERT-MARKET.

Proposition 4. Suppose that Assumptions INVERT-MARKET, SEPSHARE, and NPIV-

MARKET hold. Suppose additionally that the inverse market share function σ̄−1 is differen-

tiable and that the support of st is path-connected. Then, gj is identified on the full support

of xjt for each j, σ̄ is supported on the full support of δj(xt, st, ξt), and ξt is identified for

each t.

Proof. Inverting the equation

sjt = σ̄j(sjt + gj(xjt) + ξjt) ∀j,

which is legal by Assumption INVERT-MARKET, yields

σ̄−1j (st) = sjt + gj(xjt) + ξjt

for each j ∈ J . Here, I have assumed α = 1, although the proof is essentially the same in

the α = −1 case. We can thus write

sjt = σ̄−1j (st)− gj(xjt)︸ ︷︷ ︸
=:κj(st,xjt)

+ ξjt. (20)

Equation (20) falls within the NPIV framework: the left-hand side is observable and κj(s, xj)

is an unknown function of (s, xj). Consequently, the function κj is identified by the non-

parametric instrumental variables argument of Newey and Powell (2003) under Assumption

NPIV-MARKET. The identification of ξj follows immediately.

For the separate identification of σ̄−1j and gj(xj), we require a location normalization; other-

wise, we could shift a constant between these two functions without altering κj . As a location

normalization, I impose that there is a x̄j known to the researcher such that gj(x̄j) = 0. Then,

σ̄−1j (s) = κj(s, x̄j) and gj(xj) = κj(s, xj)− σ̄−1j (s). Next, note that σ̄−1j is differentiable by

assumption and that all partial derivatives of σ̄−1j are identified on the support of st by the

separability of σ̄−1j and gj in the definition of κj . Pick some s† in the support of s|x̄j . Then,

σ̄−1j (s†) = κj(s
†, x̄j). Therefore, for any s in the support of st and a continuous curve r with

a range contained in the support of st such that r(0) = s† and r(1) = s (which exists by

virtue of the support being path-connected), the fundamental theorem of calculus for line
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integrals implies that

∫ 1

0

∂σ̄−1j (r(τ))

∂s
· ∇r(τ)dτ + κj(s

†, x̄j) = σ̄−1j (s)− σ̄−1j (s†) + κj(s
†, x̄j)

= σ̄−1j (s),

which identifies σ̄−1j on the entire support of st and consequently identifies gj(xj) = κj(s, xj)−
σ̄−1j (s) on the full support of xj . The identification of σ̄ on the support of δ(xt, st, ξt)

immediately follows from the identification of σ̄−1 on the support of st.

The result above shows that a basic model of network externalities is identified by a substan-

tive restriction on how market shares enter consumers’ indirect utilities. This restriction is

substantive in two ways: (i) it only allows a product’s own market share to affect its indirect

utility and (ii) it imposes a functional relationship between the product’s own market share

and its indirect utility, whereas this functional relationship may be what we seek to learn

from the data.

The logic underlying the identification result above is readily applied to the variant of the

model in which total quantities enter σ̄ instead of market shares. The following proposition

characterizes identification in this case.

Proposition 5. Suppose that Assumptions INVERT-MARKET and SEPSHARE, and NPIV-

MARKET hold, and that

δj(xt,Mtst, ξt) = αMtsjt + gjt(xjt) + ξjt,

for all j ∈ Jt and for α ∈ {−1, 1}, where α is known by the researcher. This is an adaptation

of Assumption SEPSHARE to the total quantities model. Suppose additionally that the in-

verse market share function σ̄−1 is differentiable and that the support of st is path-connected.

Then, g, σ̄, and ξt are identified.

The proof is almost identical to that of Proposition 5. Note that, when Mt is assumed

to satisfy the conditions required of zjt by Assumption NPIV-MARKET, then Mt may be

included in the zjt vector; this reduces the requirement for BLP instruments. In the special

case in which only a product’s own market share appears in its utility index, there is only

one endogenous regressor that requires an instrument. It is possible to deploy as many

excluded instruments (one, Mt) as endogenous regressors in this case without using any

BLP instruments.
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C.2 Proof of Proposition 2

Proof. Assumption INVERT-MARKET implies the existence of an inverse σ̄−1 of the average

choice probability function σ̄ that satisfies, for each j,

σ̄−1j (st) = xjt + hj(Mtst) + ξjt.

Re-arranging terms in the equation above yields a nonparametric regression equation:

xjt = κj(st,Mt)− ξjt

for

κj(s,M) = σ̄−1j (s)− hj(Ms). (21)

Assumption NPIV-TOT and the identification argument of Newey and Powell (2003) yields

the identification of κj on the support of {st,Mt}. The two assumptions in the statement of

the proposition provide two ways to separately identify σ̄−1 and hj . Under assumption (a),

we can write hj(Ms) = hj(Msj) in a slight abuse of notation. In this case,

∂κj
∂M

(s,M) = −h′j(Msj)sj ⇒ h′j(Msj) = − 1

sj

∂κj
∂M

(s,M),

which shows that h′j is identified on the support of Mtsjt. Differentiation is legal in this

context by Assumption CALC-TOT. The entire function hj is identified under the location

normalization provided in the main text that hj(q
∗
j ) = 0 for a known number q∗j ; I take

q∗j as a number rather than a vector because hj only depends on a scalar argument under

assumption (a). Indeed, for qt in the support of Mtst,

hj(qj) =

∫ qj

q∗j

h′(q)dq

by the fundamental theorem of calculus and h(q∗j ) = 0. Integration of h′ over [q∗j , qj ] is

justified by the convexity of the support of Mtst as stipulated by Assumption CALC-TOT.

The function σ̄−1j is then immediately identified on the support of st for each j, which

implies the identification of σ̄ on the support of δ(xt, st, ξt). This completes the identification

argument under assumption (a).

Now consider assumption (b). Note that

∂κj
∂s

(s,M) = ∇σ̄−1j (s)−M∇hj(Ms), (22)

where ∇ is the gradient operator. Differentiation is legal in this context by Assumption

CALC-TOT. We have

lim
M↓0

∂κj
∂s

(s,M) = ∇σ̄−1j (s), (23)

which shows how the large support assumption leads to identification of ∇σ̄−1j ; the right-
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hand side of (23) is identified because (i) κj is identified on the full support of {st,Mt} and

(ii) the closure of this support includes Mt = 0 for all st. Note that the identification of ∇hj
consequently follows from (22). The levels of σ̄−1j and hj are subsequently identified using

the location normalization that hj(q
∗
j ) = 0 for a known vector q∗j . Indeed, the fundamental

theorem of calculus for line integrals implies that for a differentiable path r with r(0) = q∗j
and r(1) = qj in the support of Mtst,∫ 1

0
∇hj(r(τ)) · r′(τ)dτ = hj(q).

Integration of ∇hj over a path r in the support of Mtst is justified by the convexity of this

support as stipulated by Assumption CALC-TOT. Given the definition of κj in (21), the

identification of hj on the support of Mtst and the previously established identification of

κj on the support of {st,Mt} implies the identification of σ̄−1 on the support of st. The

identification of σ̄−1 on the support of st straightforwardly implies the identification of σ̄ on

the support of δ(xt, st, ξt).

C.3 Proof of Proposition 3

Before presenting the proof, I provide technical conditions that adapt Assumption 5 of Berry

and Haile (2022) to my setting.

Assumption TECH (Technical conditions). The following conditions hold:

(i) suppwit is open and connected;

(ii) g is uniformly continuous and continuously differentiable on suppwit;

(iii) σ(δ, s) is continuously differentiable with respect to δ for all (δ, s) ∈ supp(δ(wit, ξt), st);

and

(iv) Dg(w) and Dδσ(δ, s) are nonsingular almost surely on suppwit and supp(δ(wit, ξt), st),

respectively.

Proof. The proof closely follows Berry and Haile (2022). Let w∗(s, s, ξ) be the vector of

individual characteristics that give rise to choice probabilities s when market shares equal s

and the vector of unobservable product qualities is equal to ξ. Such a vector exists for all s

in the support of s conditional on sit = s and ξ = ξt.. Additionally, w∗(s, s, ξ) is unique by

virtue of Assumptions INV-DEMAND and INV-INDEX. Next, let W = suppwit and let ‖·‖
be the Euclidean norm. By Lemma 1 in Berry and Haile (2022), there exists a s ∈ supp st

and ∆ > 0 such that for all w and w′ in suppwit such that ‖w − w′‖ < ∆, there exist a

choice probability vector s and vectors ξ and ξ′ in supp ξt | s such that w = w∗(s, s, ξ) and

w′ = w∗(s, s, ξ′). This follows from Lemma 1 after substituting st in place of their price

vector Pt and recalling that I condition on exogenous market characteristics xt throughout

my analysis. Next, Lemma 2 in Berry and Haile (2022) implies that there is a ∆ > 0
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such that for almost all w and w′ in suppwit such that ‖w − w′‖ < ∆, (Dg(w))−1Dg(w′) is

identified. By Lemma 3 in Berry and Haile (2022), g is identified.

Recall the index structure (presented here with the xt characteristics suppressed in the

notation): for j ∈ Jt,

sijt = σj(δ(wit, ξt), st)

δj(wit, ξt) = gj(wit) + ξjt
(24)

The nonparametric regression equation used in identifying σ−1 is

gj(w
∗(s∗, st, ξt)) = σ−1j (s∗, st)− ξjt (25)

We obtain this equation by σ with respect to its first argument in (24) at wit = w∗(s, st, ξit),

where s∗ is the common choice probability of Assumption CPROB; this inversion is justified

by Assumption INV-DEMAND. The common choice probability s∗ and the left-hand side

of (25) are known. Therefore, (25) is a standard nonparametric regression equation with

dependent variable gj(w
∗(s∗, s, ξ)), nonparametric regression function s 7→ σ−1(s∗, s), and

additive disturbance −ξjt. By the argument of Newey and Powell (2003), Assumptions

NPIV-EX and NPIV-C identify each of the ξjt unobservables Given the choice probability

function is

sit = s(st, ξt, wit)

and both the left-hand side and each of the arguments of s is known, the function s is

identified on its support.

C.4 Identification of models with multiple demographic groups

I now consider the identification of models in which demographic-group-specific market shares

appear in consumers’ indirect utilities. I consider identification in two settings. In the first,

which I call the submarket data setting, the researcher observes market shares and market

sizes specific to each of the D demographic groups. In the second, which I call the microdata

setting, the research observes microdata with individual choice probabilities and individual

characteristics that vary within demographic groups.

I denote the market share of product j among consumers of demographic group d in market

t by sdjt and the measure of consumers belonging to demographic group d in market t by

Md
t . Let St be a J ×D matrix whose dth column provides the market shares of the J inside

goods among members of demographic group d in market t. I do not consider a model in

which market shares rather than total quantities enter choice probability functions in the

submarket data case because such a model suffers from the same identification problems

as in the market data setting without multiple demographic groups. Instead, I begin by

considering a total quantities model in the submarket data setting. Let σ̄j,d denote the
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average choice probability function for product j and demographic group d; the equilibrium

condition that determines market shares is

σ̄j,d(xt, StM
†
t , ξt) = sdjt, (26)

which is the analogue of (3) for the setting with multiple market shares. In (26),

M †t = diagMt =


M1
t 0 · · · 0

0 M2
t · · · 0

...
...

. . .
...

0 0 · · · MD
t


so that

StM
†
t = [s1t , s

2
t , · · · , sDt ]M †t = [M1

t s
1
t , M

2
t s

2
t , · · · , MD

t s
D
t ].

I study identification under the following index structure:

σ̄j,d(xt, StM
†
t , ξt) = σ̄dj (δdj (xt, StM

†
t , ξt))

δdj (xjt, StM
†
t , ξt) = xdjt + hdj (StM

†
t ) + ξdjt

(27)

for each product j and each demographic group d. Here, σ̄j,d is the average choice probability

function specific to demographic group d.

The index structure (27) above restricts each xdjt to be scalar-valued, but the decomposition

of xjt into d-specific components is not necessarily an assumption; indeed, it remains possible

to set xdjt = xjt for a single product characteristic xjt. The assignment of a coefficient of one

to xdjt is a scale normalization.

This model permits both the unobservables ξdjt and the structural function gdj to vary across

demographic groups. Under a generalization of Assumption INVERT-MARKET to the case

of multiple demographic groups, we can invert d-specific market shares to obtain

σ̄−1j,d (sdt ) = xdjt + hdj (StM
†
t ) + ξdjt.

Re-arranging terms yields a nonparametric regression equation:

xdjt = σ̄−1j,d (sdt )− hdj (StM
†
t )︸ ︷︷ ︸

=:κdj (St,Mt)

+ξdjt.

Note that κdj includes JD + D endogenous regressors. Candidate instruments include the

D-dimensional Mt and the BLP instruments {xdjt : d ∈ D, j ∈ J }, of which there are JD.

Although we can reduce our instrument requirements by assuming that hdj does not depend

on certain columns of St, i.e., by assuming that consumers do not care about demand within

certain demographic groups, such an assumption also reduces the availability of available

instruments. This is because the xd
′
jt for excluded demographic groups d′ do not shift sdt
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when group d consumers do not value sd
′
t .

Under an appropriate completeness condition and exclusion restriction, a nonparametric

instrumental variables argument identifies κdj and ξdjt. We can then use, as in Proposition 2,

additional conditions on hdj or the support of Mt to separately identify σ̄−1j,d and g̃dj .

I now discuss identification of in the microdata setting. Identification analysis in this setting

is very similar to identification analysis in this setting without distinct demographic groups.

I focus here on a model in which market shares enter the choice probability functions. Con-

sumers in this model have characteristics {wijt}j∈J that vary within demographic groups. I

consider identification under the index structure

sijt = σj,d(i)(δ(wit, ξt), xt, st)

δdj (wit, ξt) = gdj (wit) + ξdjt
(28)

for j ∈ {1, . . . , J} and d ∈ {1, . . . , D}, where d(i) is consumer i’s demographic group.

Under suitably generalized assumptions, Proposition 3 is generalized to identify the model

with multiple demographic groups. Indeed, the gdj functions are identified by applying the

argument of Berry and Haile (2022) for identifying g as summarized in the proof of Propo-

sition 3 (see Appendix C.3) to each demographic group separately. With the gjd functions in

hand, one can proceed with identification using nonparametric regression equations of the

form (25) that are specific to individual demographic groups d. As noted in Appendix C.3,

identifying the ξt unobservables in these equations is sufficient for identification.

D Price sensitivity estimation

This section provides additional details of the price-sensitivity estimation procedure de-

scribed in Section 5.4. To begin, I define σ̄jt(p, s) as the mean probability that a con-

sumer in market t uses site j under prices p when she believes that the prevailing market

shares are s. The mean in the definition of σ̄jt is taken over t’s distribution of consumer

characteristics wijt and unobservables εijt. The market shares s need not be the market

shares consistent with the mean choice probabilities σ̄j(p, s); they are just a member of

∆J = {s ∈ (0, 1)J :
∑J

j=1 sj ≤ 1}. Let σjt(pt) denote the market shares that prevail under

prices pt. The function σt is implicitly defined by

σ̄t(p, σt(p)) = σt(p). (29)

The implicit function theorem tells us that, under a nonsingularity condition,

Dpσt(p) = [I −Dsσ̄t(p, σt(p))]
−1Dpσ̄t(p, σt(p)). (30)

When εijt are iid type 1 extreme value random variables, the derivatives appearing on the

right-hand side are straightforward to compute. Furthermore, in this case we can explicitly
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obtain an expression for α in terms of observables and estimated objects from the first-order

condition (FOC) for a particular site j. This FOC is

α = −
∑

tMtσjt(pt)∑
tMt(D̃pσt(pt))jjpj

.

for D̃pσ̄t = Dpσ̄t/α, which can be expressed solely in terms of market shares and parameters

for which I obtain estimates in the two-step estimation of the consumer choice model. Let d̂jt

be the estimator of
(
D̃pσt(pt)

)
jj

obtained by substituting estimates and empirical analogues

of population objects into the form of D̃pσ̄t stated later in this appendix. My estimator of

α is then

α̂ = − 1

J

∑
j

∑
tMtsjt∑
tMtd̂jtpj

.

When the εijt random variables are iid type 1 extreme value, the network externality function

fj depends only on sj and is symmetric across j, and

δj = ψ̄j − αpj + f(sj) + ξj + εij ,

we have

∂σ̄j
∂pj

= −ασ̄j(1− σ̄j)

∂σ̄j
∂pk

= ασ̄j σ̄k

∂σ̄j
∂sj

=
∂f

∂sj
(sj)σ̄j(1− σ̄j)

∂σ̄j
∂sk

= − ∂f
∂sk

(sk)σ̄kσ̄j

Now note that

D̃pσ̄t =
1

α
Dpσ̄t

does not depend on α. This makes it convenient to write (30) as

Dpσt(p) = α [I −Dsσ̄t(p, σt(p))]
−1 D̃pσ̄t(p, σt(p))︸ ︷︷ ︸

=:D̃pσt(p)

.

Given market shares and the parameters of the consumer choice model, we can compute

D̃pσt(p) without knowledge of the price sensitivity α. We can write site j’s FOC(16) as

α
∑
t

Mt(D̃pσt(pt))jjpj = −
∑
t

Mtσjt(pt).
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when we assume the observed prices are equilibrium prices. Therefore,

α = −
∑

tMtσjt(pt)∑
tMt(D̃pσt(pt))jjpj

.

Since the first-order condition holds for each j, we have

α = − 1

J

∑
j

∑
tMtσjt(pt)∑

tMt(D̃pσt(pt))jjpj
. (31)

Let d̂jt be the estimator of
(
D̃pσt(pt)

)
jj

obtained by (i) substituting in observed market

shares sjt for σ̄jt in the partial derivatives of σt with respect to market shares and (ii)

substituting γ with an estimator γ̂. Substituting in d̂jt for D̃pσ̄t in (31) yields my estimator

of α:

α̂ = − 1

J

∑
j

∑
tMtsjt∑
tMtd̂jtpj

.

I now consider estimation of α under a more general share-type model with indirect utilities

of the form

δdj = ψ̄dj − αpj + fdj (s, s1, . . . , sD) + ξdj + εij ,

Here, I allow network externalities to depend on the market shares of all demographic groups

in addition to the market among particular demographic groups d′ ∈ {1, . . . , D}. I do not

yet allow α to depend on d. Last, note that I explicitly allow the network externality term to

depend both on overall market shares and demographic-specific market shares. The implicit

function mapping prices into equilibrium market shares is given by the condition

σ̄(p, σ(p)) = σ(p)

as before, but now σ includes a component for each site-demographic group pair. Site j’s

Bertrand-Nash equilibrium price is

p∗j = arg max
pj

∑
t

∑
d

Md
t σ

d
jt(pj , p

∗
−j ;α)pj .

The corresponding FOC is

∑
t

∑
d

Md
t σ

d
jt(p

∗
j , p
∗
−j ;α) +

∑
t

∑
d

Md
t

∂

∂pj
σdjt(p

∗
j , p
∗
−j ;α)p∗j = 0.

The implicit function theorem provides a formula for Dpσjt(p;α):

Dpσt(p) = [I −Dsσ̄t(p, σt(p))]
−1Dpσ̄t(p, σt(p)).

Here, I is the JD × JD identity matrix. Also note that (i) the inverted matrix on the

right-hand side is JD × JD whereas the price derivatives are JD × J and (ii) the specifi-
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cation above includes both share-type and quantity-type models since the f functions can

implicitly depend on the populations of demographic groups within particular markets. I

now provide the forms of the Dsσ̄ and Dpσ̄ functions under the multinomial logit parametric

assumption:

∂σ̄dj
∂pj

= −ασ̄dj (1− σ̄dj )

∂σ̄dj
∂pk

= ασ̄dj σ̄
d
k

∂σ̄dj

∂sdj
= σ̄dj (1− σ̄dj )

[
∂fdj
∂sj

dsj

dsdj
+
∂fdj

∂sdj

]
−
∑
r 6=j

σ̄dj σ̄
d
r

[
∂fdr
∂sj

dsj

dsdj
+
∂fdr
∂sdr

]
∂σ̄dj

∂sdk
= σ̄dj (1− σ̄dj )

[
∂fdj
∂sk

dsk

dsdk
+
∂fdj

∂sdk

]
−
∑
r 6=j

σ̄dj σ̄
d
r

[
∂fdr
∂sk

dsk

dsdk
+
∂fdr
∂sdk

]
∂σ̄dj
∂sgj

= σ̄dj (1− σ̄dj )

[
∂fdj
∂sj

dsj
dsgj

+
∂fdj
∂sgj

]
−
∑
r 6=j

σ̄dj σ̄
d
r

[
∂fdr
∂sj

dsj
dsgj

+
∂fdr
∂sgr

]
∂σ̄dj
∂sgk

= σ̄dj (1− σ̄dj )

[
∂fdj
∂sk

dsk
dsgk

+
∂fdj
∂sgk

]
−
∑
r 6=j

σ̄dj σ̄
d
r

[
∂fdr
∂sk

dsk
dsgk

+
∂fdr
∂sgk

]
.

Note that, since sj =
∑

d(M
d
t /Mt)s

d
j , dsj/ds

d
j = Md

t /Mt. As in the simple model, the matrix

D̃pσ̄t = 1
αDpσ̄t does not depend on α and neither does

D̃pσt(p) :=
1

α
[I −Dsσ̄t(p, σt(p))]

−1Dpσ̄t(p, σt(p)).

By construction, Dpσt(p) = αD̃pσt(p). Let

∆d
jt =

1

α

∂σdj
∂pj

(p∗;α),

which does not depend on α by the analysis above. Therefore, we can write the FOC as

α = −
∑

t

∑
dM

d
t σ

d
jt∑

t

∑
dM

d
t ∆d

jtp
∗
j

.

Substituting empirical analogues/estimates in for population objects provides an estimator

α̂ of α.

D.1 Standard errors

Since the number of consumers in each market grows at a much faster rate than the number

of markets, the first-order source of asymptotic variance in α̂ comes solely from asymptotic

variance in our estimates from the market step of estimation. Thus, I compute standard

errors for α̂ using a parametric bootstrap using the standard errors of my estimates from the
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market step of estimation.

E Additional results

Table 18 provides results of the microstep estimation for the baseline specification. Table 20

provides results of the microstep estimation for the “Age” demographic group specification.

For each specification, standard errors are computed from the inverse Hessian estimate of

the estimator’s asymptotic variance.
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Table 18: First-stage parameter estimates – “Overall” demographic group specification, de-
mographic variables

eharmony.com match.com okcupid.com pof.com

Education: High school or less (Omit.) 0.000 0.000 0.000 0.000
- - - -

Education: Some college 0.072 0.106 -0.071 0.369
(0.150) (0.103) (0.326) (0.228)

Education: College degree -0.076 -0.063 -0.293 -0.206
(0.161) (0.109) (0.355) (0.273)

Education: Advanced degree -0.028 0.048 -1.329 -0.139
(0.182) (0.121) (0.627) (0.304)

Education: Unknown 0.230 0.020 -0.356 0.462
(0.112) (0.078) (0.238) (0.179)

Age: Under 25yo (Omit.) 0.000 0.000 0.000 0.000
- - - -

Age: 25-29yo 0.141 0.285 -0.110 0.344
(0.178) (0.135) (0.411) (0.253)

Age: 30-34yo 0.063 0.294 -0.460 0.424
(0.167) (0.126) (0.402) (0.238)

Age: 35-39yo 0.026 0.169 -0.539 0.266
(0.163) (0.124) (0.382) (0.236)

Age: 40-49yo 0.108 0.215 -0.216 0.013
(0.154) (0.118) (0.343) (0.226)

Age: 50+yo 0.097 0.249 -0.326 0.187
(0.153) (0.117) (0.343) (0.223)

Children in HH: No (Omit.) 0.000 0.000 0.000 0.000
- - - -

Children in HH: Yes 0.094 0.055 0.028 -0.045
(0.067) (0.050) (0.180) (0.097)

Race: White (Omit.) 0.000 0.000 0.000 0.000
- - - -

Race: Black -0.082 -0.496 -0.587 -0.369
(0.089) (0.077) (0.322) (0.150)

Race: Asian -0.287 -0.185 0.252 -0.993
(0.216) (0.142) (0.388) (0.510)

Race: Other -0.293 -0.280 0.228 0.170
(0.192) (0.136) (0.392) (0.247)

Broadband: No (Omit.) 0.000 0.000 0.000 0.000
- - - -

Broadband: Yes -0.496 -0.116 -0.131 -0.570
(0.106) (0.093) (0.372) (0.142)

Hispanic: No (Omit.) 0.000 0.000 0.000 0.000
- - - -

Hispanic: Yes -0.107 0.069 -0.085 -0.208
(0.059) (0.043) (0.168) (0.091)

Income: Under 25k (Omit.) 0.000 0.000 0.000 0.000
- - - -

Income: 25-75k 0.089 -0.024 0.048 0.077
(0.064) (0.047) (0.180) (0.090)

Income: 75-100k 0.068 -0.054 0.061 -0.048
(0.080) (0.059) (0.222) (0.117)

Income: Over 100k 0.001 -0.052 0.306 -0.297
(0.079) (0.057) (0.204) (0.120)

HH size: 1 (Omit.) 0.000 0.000 0.000 0.000
- - - -

HH size: 2 -0.136 -0.206 -0.228 -0.008
(0.098) (0.072) (0.255) (0.146)

HH size: 3 -0.323 -0.295 -0.318 -0.037
(0.117) (0.086) (0.306) (0.172)

HH size: Over 3 -0.233 -0.357 -0.438 -0.056
(0.114) (0.084) (0.300) (0.169)

Log local population 0.042 -0.023 -0.097 -0.061
(0.021) (0.015) (0.054) (0.029)
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Table 19: First-stage parameter estimates – “Overall” demographic group specification, web
usage variables

eharmony.com match.com okcupid.com pof.com

Log Pages Viewed 0.141 0.237 0.548 0.100
(0.073) (0.057) (0.201) (0.104)

Log Browsing Duration -0.136 -0.094 0.016 -0.022
(0.060) (0.044) (0.154) (0.085)

Pages Viewed: Adult 0.062 0.042 -0.022 0.078
(0.012) (0.011) (0.050) (0.012)

Pages Viewed: Advert -0.011 -0.001 -0.001 -0.003
(0.011) (0.005) (0.013) (0.012)

Pages Viewed: Finance 0.030 0.017 -0.089 -0.126
(0.027) (0.019) (0.084) (0.050)

Pages Viewed: Gaming -0.002 -0.033 -0.035 -0.012
(0.011) (0.011) (0.032) (0.020)

Pages Viewed: Government 0.018 0.010 -0.676 -0.108
(0.028) (0.021) (0.346) (0.088)

Pages Viewed: Info -0.061 0.021 0.140 -0.087
(0.053) (0.030) (0.046) (0.087)

Pages Viewed: Malware 0.009 -0.017 -0.041 -0.013
(0.007) (0.006) (0.023) (0.014)

Pages Viewed: Media -0.054 0.008 0.043 -0.174
(0.021) (0.011) (0.021) (0.044)

Pages Viewed: Other 0.000 -0.003 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Pages Viewed: Portal 0.016 0.033 0.011 0.024
(0.004) (0.003) (0.009) (0.005)

Pages Viewed: Retail 0.002 0.002 -0.000 0.004
(0.004) (0.003) (0.010) (0.006)

Pages Viewed: Social Media -0.004 -0.003 -0.004 0.002
(0.001) (0.001) (0.003) (0.002)

Pages Viewed: Video -0.021 -0.070 0.025 -0.076
(0.012) (0.011) (0.013) (0.025)

Pages Viewed: Weather -0.102 -0.053 -0.135 -0.193
(0.074) (0.043) (0.179) (0.119)

Pages Viewed: Webservice 0.007 -0.004 0.010 -0.048
(0.008) (0.007) (0.014) (0.023)

Pages Viewed: Internet/Wireless -0.006 -0.001 -0.021 -0.043
(0.025) (0.018) (0.065) (0.050)

Pages Viewed: News -0.185 0.063 -0.026 0.047
(0.076) (0.031) (0.123) (0.064)

Pages Viewed: Sports -0.123 0.011 -0.123 -0.043
(0.049) (0.022) (0.103) (0.056)

Pages Viewed: Travel 0.133 0.205 -0.992 -0.108
(0.079) (0.055) (0.417) (0.159)

Pages Viewed: Career 0.205 0.102 -0.127 0.166
(0.062) (0.054) (0.275) (0.095)

Pages Viewed: Downloads 0.110 -0.102 -0.388 0.160
(0.108) (0.109) (0.495) (0.146)

Pages Viewed: Directory 0.898 0.739 1.033 1.084
(0.431) (0.372) (1.120) (0.593)
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Table 20: First-stage parameter estimates (“Age” demographic group specification), demo-
graphic variables

eharmony.com match.com okcupid.com pof.com

Education: High school or less (Omit.) 0.000 0.000 0.000 0.000
- - - -

Education: Some college 0.071 0.112 -0.068 0.355
(0.148) (0.102) (0.323) (0.224)

Education: College degree -0.078 -0.060 -0.295 -0.214
(0.159) (0.109) (0.353) (0.270)

Education: Advanced degree -0.027 0.056 -1.313 -0.146
(0.181) (0.120) (0.625) (0.301)

Education: Unknown 0.228 0.024 -0.350 0.453
(0.110) (0.076) (0.235) (0.173)

Age: Under 25yo (Omit.) 0.000 0.000 0.000 0.000
- - - -

Age: 25-29yo 0.149 0.319 -0.094 0.357
(0.171) (0.131) (0.407) (0.244)

Age: 30-34yo 0.059 0.321 -0.451 0.428
(0.161) (0.122) (0.397) (0.228)

Age: 35-39yo -2.006 -2.042 -7.552 -2.154
(0.156) (0.120) (0.376) (0.226)

Age: 40-49yo -1.923 -1.995 -7.236 -2.409
(0.146) (0.113) (0.335) (0.214)

Age: 50+yo -1.933 -1.962 -7.343 -2.231
(0.145) (0.112) (0.334) (0.210)

Children in HH: No (Omit.) 0.000 0.000 0.000 0.000
- - - -

Children in HH: Yes 0.093 0.056 0.017 -0.041
(0.067) (0.050) (0.180) (0.097)

Race: White (Omit.) 0.000 0.000 0.000 0.000
- - - -

Race: Black -0.085 -0.497 -0.584 -0.369
(0.087) (0.076) (0.318) (0.148)

Race: Asian -0.286 -0.187 0.281 -0.996
(0.213) (0.140) (0.381) (0.508)

Race: Other -0.300 -0.282 0.248 0.172
(0.189) (0.135) (0.383) (0.242)

Broadband: No (Omit.) 0.000 0.000 0.000 0.000
- - - -

Broadband: Yes -0.498 -0.115 -0.131 -0.572
(0.106) (0.093) (0.368) (0.142)

Hispanic: No (Omit.) 0.000 0.000 0.000 0.000
- - - -

Hispanic: Yes -0.108 0.069 -0.084 -0.206
(0.059) (0.042) (0.166) (0.090)

Income: Under 25k (Omit.) 0.000 0.000 0.000 0.000
- - - -

Income: 25-75k 0.081 -0.026 0.052 0.082
(0.064) (0.047) (0.178) (0.090)

Income: 75-100k 0.063 -0.057 0.066 -0.046
(0.079) (0.059) (0.221) (0.116)

Income: Over 100k -0.004 -0.053 0.316 -0.294
(0.078) (0.056) (0.201) (0.118)

HH size: 1 (Omit.) 0.000 0.000 0.000 0.000
- - - -

HH size: 2 -0.142 -0.212 -0.228 -0.014
(0.097) (0.072) (0.252) (0.143)

HH size: 3 -0.328 -0.300 -0.306 -0.040
(0.116) (0.085) (0.303) (0.170)

HH size: Over 3 -0.239 -0.362 -0.439 -0.064
(0.113) (0.084) (0.298) (0.167)

Log local population 0.043 -0.023 -0.095 -0.062
(0.016) (0.012) (0.044) (0.023)
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Table 21: First-stage parameter estimates (“Age” demographic group specification), web
usage variables

eharmony.com match.com okcupid.com pof.com

Log Pages Viewed 0.142 0.241 0.538 0.094
(0.067) (0.051) (0.174) (0.096)

Log Browsing Duration -0.136 -0.097 0.014 -0.020
(0.060) (0.044) (0.152) (0.085)

Pages Viewed: Adult 0.063 0.042 -0.023 0.077
(0.012) (0.011) (0.049) (0.012)

Pages Viewed: Advert -0.011 -0.001 -0.001 -0.003
(0.011) (0.006) (0.013) (0.012)

Pages Viewed: Finance 0.031 0.018 -0.093 -0.126
(0.026) (0.019) (0.083) (0.050)

Pages Viewed: Gaming -0.002 -0.033 -0.034 -0.010
(0.011) (0.011) (0.032) (0.019)

Pages Viewed: Government 0.016 0.007 -0.742 -0.106
(0.028) (0.021) (0.345) (0.086)

Pages Viewed: Info -0.057 0.021 0.140 -0.090
(0.053) (0.030) (0.046) (0.086)

Pages Viewed: Malware 0.009 -0.017 -0.042 -0.013
(0.007) (0.006) (0.023) (0.014)

Pages Viewed: Media -0.055 0.008 0.042 -0.174
(0.021) (0.011) (0.020) (0.044)

Pages Viewed: Other 0.000 -0.004 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Pages Viewed: Portal 0.016 0.033 0.012 0.023
(0.004) (0.003) (0.008) (0.005)

Pages Viewed: Retail 0.002 0.002 0.000 0.005
(0.004) (0.003) (0.010) (0.006)

Pages Viewed: Social Media -0.004 -0.003 -0.004 0.002
(0.001) (0.001) (0.002) (0.002)

Pages Viewed: Video -0.022 -0.070 0.025 -0.076
(0.012) (0.011) (0.012) (0.025)

Pages Viewed: Weather -0.105 -0.057 -0.130 -0.193
(0.074) (0.043) (0.179) (0.119)

Pages Viewed: Webservice 0.007 -0.004 0.011 -0.049
(0.008) (0.007) (0.014) (0.023)

Pages Viewed: Internet/Wireless -0.006 -0.002 -0.025 -0.042
(0.025) (0.018) (0.066) (0.049)

Pages Viewed: News -0.186 0.064 -0.037 0.052
(0.076) (0.031) (0.124) (0.064)

Pages Viewed: Sports -0.123 0.014 -0.122 -0.041
(0.049) (0.022) (0.103) (0.056)

Pages Viewed: Travel 0.135 0.205 -0.998 -0.110
(0.079) (0.055) (0.417) (0.158)

Pages Viewed: Career 0.204 0.101 -0.123 0.168
(0.062) (0.054) (0.272) (0.094)

Pages Viewed: Downloads 0.106 -0.105 -0.387 0.151
(0.107) (0.109) (0.492) (0.146)

Pages Viewed: Directory 0.878 0.714 0.940 1.091
(0.428) (0.369) (1.172) (0.587)

60


	Introduction
	Related literature

	Setting and data
	Multihoming
	Relationship between local population and dating website usage

	Model
	Multiple equilibria
	Microfoundation for network externalities in the dating industry

	Identification
	Simple model
	Identification with market data
	Identification with microdata
	Discussion of identification results

	Estimation
	Asymptotic assumptions
	Microstep
	Market step
	Price sensitivity

	Parameter estimates
	Counterfactual analysis
	Decomposition of variance in market shares
	Increase in market concentration counterfactual
	Emergence of a niche site counterfactual
	Monopoly counterfactual
	Profitability of website integration

	Conclusion
	References
	Bibliography
	Microfoundation for network externalities on dating websites
	Discussion of locally unique equilibria
	Identification appendix
	Identification with market data using restrictions on network externalities
	Proof of Proposition 2
	Proof of Proposition 3
	Identification of models with multiple demographic groups

	Price sensitivity estimation
	Standard errors

	Additional results

