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Abstract

The fees that platforms charge to consumers and merchants may be inefficient due

to market power, network externalities, and business-stealing externalities. Using a

structural model of platform competition estimated on data covering all major US

food delivery platforms, I quantify distortions in platform fees. Consumer fees are

nearly optimal due to offsetting market power and offline business stealing distortions.

Restaurant commissions, by contrast, are nearly twice their socially optimal levels,

primarily because platforms do not fully account for consumer benefits from increased

restaurant variety on platforms. I also consider whether platform competition corrects

inefficiency in platform fees.
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1 Introduction

Digital platforms that match buyers and sellers offer convenience and variety to consumers. Yet

their fees have faced criticism for being both distributionally unfavourable to merchants and al-

locatively inefficient.1 This article empirically evaluates whether platform fees are not only too

high overall, but also structured in a way that places an excessive burden on sellers.

The setting is the US food delivery industry, which has witnessed particularly contentious debates

over platform fees. Leading delivery platforms charge restaurants commissions equal to a share—

often around 30%—of sales along with per-transaction fees to consumers. Spurred by restaurant

complaints about high commissions, many local governments have imposed commission caps lim-

iting commissions to 15%. These policies provide a natural backdrop for an evaluation of whether

platforms’ restaurant commissions are excessive.

Several economic forces cause profit-maximizing platforms to set fees that diverge from those

maximizing total welfare. First, platform market power drives both consumer fees and restaurant

commissions above efficient levels.

Second, platforms internalize network externalities differently than does a social planner. In food

delivery, network externalities arise because consumers value restaurant variety and restaurants

benefit from platforms with large consumer bases. A social planner’s fees account for the cross-

side benefits enjoyed by all users on each side of the market. Profit-maximizing platforms, however,

focus only on whether fees induce marginal users to participate, ignoring benefits to inframarginal

platform users.

Platforms’ incomplete internalization of network externalities generates inefficiencies in platform

fees. Consider a platform whose loyal consumers strongly value restaurant variety but whose

marginal consumers are primarily fee-sensitive. To attract these fee-sensitive marginal consumers

while earning a markup above costs, the platform may set low consumer fees and high restaurant

commissions. Such a fee structure may inefficiently discourage restaurant participation on the

platform given the benefits that the platform’s loyal consumers enjoy from restaurant variety.

Beyond the classical distortions from market power and network externalities, I identify sources of

inefficiency rooted in business stealing among merchants. Consumers substitute between ordering

directly from restaurants (“offline”) and ordering through platforms (“online”), which implies that

online sales subtract from restaurants’ offline sales. Although a restaurant internalizes the effect of

its platform sales on its own offline sales, it does not account for the effects on rivals’ offline sales.

In fact, stealing rivals’ offline sales may be a key motivation for restaurants to join platforms.

When platforms raise consumer fees, some customers switch to direct ordering. This substitution

benefits merchants by raising their direct orders, limiting the extent to which restaurants steal each

others’ commission-free offline sales. A social planner would account for this benefit to merchants

when setting fees. Profit-maximizing platforms, however, ignore this substitution effect since they

earn no revenue from direct orders. This creates an offline business-stealing distortion that makes

consumer fees inefficiently low from a social perspective.

Another source of inefficiency arises from competition between merchants. When restaurants

1Examples include the law suits raised by Epic Games against Apple and Google over app store commissions and
debates over credit card fee regulation.
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join platforms partly to steal sales from rivals, they may adopt platforms even when the fixed

costs of adoption exceed the social benefits from expanded consumer variety. A social planner

would account for these adoption costs when setting commissions, using higher rates to discourage

socially excessive entry. Profit-maximizing platforms, however, ignore restaurants’ adoption costs

since they benefit from participation regardless of its social value. This may lead restaurant

commissions to be inefficiently low.

Platform competition introduces additional complexity. Although competition typically limits

market power, thereby reducing total platform fees, it need not correct inefficiencies in how fees

are split between consumers and merchants. Competition may focus on attracting consumers

through lower fees. Given the tendency of forces that reduce fees on one side of a two-sided

to market to raise fees on the other side—the so-called see-saw effect—increased competition for

consumers may raise merchant commissions, potentially exacerbating inefficiency in the split of

fees between buyers and sellers.

The distortions affecting each of consumer and merchant fees vary in sign, and economic theory

yields no clear predictions about which distortions dominate in determining either whether these

fees are too high in absolute level or relative to the fees of the other side. My goal is to empirically

determine the extent to which platform fees are inefficient and the sources of inefficiency.

The two primary challenges that I face are in assembling comprehensive data on a platform market

and in developing a tractable model of platform competition for use in computing fee distortions.

To address the first challenge, I assemble a rich collection of datasets on the US food delivery

industry and estimate a structural model of platform competition. The primary dataset is a panel

of consumer restaurant orders, which includes ZIP-code-level consumer locations and item-level

pricing information. I supplement this with data on all restaurants listed across major deliv-

ery platforms, as well as data harvested from platform websites that capture platform fees and

estimated delivery times. Together, these sources provide detailed information on pricing, plat-

form participation, and delivery conditions for hundreds of thousands of orders across 14 large US

metropolitan areas.

I proceed to formulate a structural model that captures the complex set of responses to platform

fee changes. The model has four stages. In the first stage, platforms set restaurant commissions

and consumer fees given constant marginal costs of fulfilling orders. Next, restaurants decide

whether to join platforms in an incomplete information entry game featuring heterogeneity by

geographic location and type (chain versus independent). In choosing which platforms to join, if

any, restaurants compare their gains in variable profits from platform adoptions to fixed costs of

platform adoption. After joining platforms, restaurants set profit-maximizing prices, which may

differ between platform and direct orders. Finally, consumers decide whether to order a restaurant

meal, which nearby restaurant to order from, and whether to use a platform in doing so. The

model captures the interdependence between consumer and restaurant platform choices: consumers

prefer platforms with broader restaurant availability, while restaurants benefit more from joining

platforms with high consumer usage. Heterogeneous consumer preferences over platforms govern

substitution patterns between platforms and direct ordering.

Estimation proceeds in steps. I first estimate consumer preferences using maximum likelihood,

recovering parameters that govern price sensitivity, preferences for restaurant variety, and substi-
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tution patterns. I then recover restaurant and platform marginal costs from first-order conditions

for optimal pricing. Next, I estimate the restaurant adoption model via the generalized method

of moments (GMM), selecting adoption cost parameters to match (i) market-specific platform

adoption rates and (ii) the covariance between expected profitability and adoption decisions.

Identification of price sensitivity and network effects is complicated by the endogeneity of platform

fees and restaurant networks, which reflect unobserved consumer tastes. I address this by using

platform/metro-area fixed effects and exploiting within-metro variation in fees and restaurant net-

works — variation driven in part by commission caps. To estimate substitution patterns, I leverage

the data’s panel structure, which traces how consumers switch among ordering options.

Using the estimated model, I compute equilibrium fees arising under competition between profit-

maximizing platforms (“privately optimal”) and those that maximize total welfare (“socially op-

timal”). Although profit-maximizing platforms set consumer fees above the socially optimal level,

the deviation is modest. On average, consumer fees exceed their welfare-maximizing level by only

$0.29 per order. This small gap reflects the interaction of two opposing forces. Market power

pushes consumer fees upward, but this effect is largely offset by an offline business stealing dis-

tortion: higher consumer fees induce some customers to switch to direct ordering, which benefits

merchants. A profit-maximizing platform ignores this benefit, while a social planner internalizes

it. Net distortions from network externalities are also small in magnitude on the consumer side.

Thus, the distortions pushing privately optimal consumer fees away from those that are socially

optimal are small on net.

By contrast, profit-maximizing commissions are nearly twice as high as those maximizing social

welfare, on average. Reducing commissions encourages platform adoption by restaurants, thus

benefitting variety-loving consumers. Consumer benefits from increased variety upon commission

reductions are about twice the fixed adoption costs associated with increased restaurant uptake

of platforms. For restaurants, the benefits of lower commissions are largely offset in equilibrium

by increased fixed costs of platform adoption and intensified intra-platform price competition:

equilibrium responses reduce restaurant benefits from moving to the socially optimal fees by 73%.

Thus, although profit-maximizing platforms charge socially excessive commissions to restaurants,

restaurants retain little of the surplus created from correcting this inefficiency.

Having characterized inefficiencies in platform fees, I assess the scope for welfare gains from

commission-cap-style regulations that fix restaurant commission rates while allowing platforms to

re-optimize their consumer fees. I find that caps set at 15%—the most common level in practice—

reduce aggregate welfare. These losses are primarily driven by increases in consumer fees: in

response to the cap, platforms shift the burden to consumers, depressing order volumes below

efficient levels and leaving fewer consumers available to enjoy the variety gains associated with

increased restaurant uptake of platforms. Although 15% commission caps benefit restaurants,

restaurants compete away 77% of their direct gains from commission reductions by joining more

platforms and reducing their prices.

Not all caps reduce welfare. Less stringent caps—those in the 20–30% range—raise total welfare.

Although moderate reductions in commissions lead platforms to raise consumer fees, they also

draw more restaurants onto platforms and reduce restaurant prices. These effects more than

offset the consumer welfare losses from higher fees, resulting in gains for both consumers and
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restaurants.

The optimal regulated commission level varies significantly across counties, from 23% at the 10th

percentile to 37% at the 90th percentile. I find that optimal restaurant commissions are lower

in counties where (i) platform orders strongly reduce direct restaurant sales, (ii) commission re-

ductions generate large consumer welfare gains through expanded restaurant variety, and (iii)

restaurants incur relatively low fixed costs to adopt platforms.

Factors (i) and (ii) converge in counties with high restaurant density, making commission caps

more likely to be welfare-enhancing in denser markets. In such markets, restaurant ordering is

high even without platforms, and hence platforms primarily subtract from direct sales rather than

expand total restaurant revenue. At the same time, dense markets offer the greatest potential for

variety improvements when commissions fall, as more restaurants are available to join platforms

and serve large consumer bases.

Although moderate commission reductions can raise total welfare, the gains are modest compared

to two-sided fee regulation. Commission reductions alone yield welfare improvements of up to $0.10

per order, while simultaneously capping consumer fees at baseline levels and reducing commissions

to the point that platforms just break even generates gains of $2.30 per order. This dramatic

difference reflects two forces. First, constraining overall platform market power produces larger

efficiency gains than simply rebalancing fees between consumers and merchants. Second, expanding

restaurant participation creates the greatest benefits when consumer fees are low, since a large

consumer base can then enjoy the additional variety created by lower commissions.

Last, I examine how platform competition affects fee structures by simulating a regime in which

platforms maximize their joint profits, a scenario equivalent to a merger of all active platforms.

Under joint profit maximization, consumer fees rise by an average of $0.77 per order, while restau-

rant commissions fall by 0.7 percentage points. This decline in commissions occurs despite the

elimination of competition because the merged platform internalizes positive spillovers across plat-

forms that arise from cost complementarities in restaurant multi-homing: once a restaurant has

joined one platform, it is less costly for the restaurant to join incremental platforms. A joint-profit-

maximizing platform accounts for this, recognizing that lowering commissions on one platform can

increase overall restaurant participation. In contrast, competing platforms do not internalize these

cross-platform gains. Without multi-homing or cost complementarities, joint profit maximization

would predictably raise fees on both sides.

Although joint profit maximization reduces commissions, it raises overall platform markups and

consequently lowers total welfare by -$0.31 per order. This result, taken together with the limited

effectiveness of one-sided commission caps compared to two-sided fee regulation, suggests that the

main inefficiency in platform pricing lies in the overall fee level, not in the allocation of fees between

consumers and merchants.

1.1 Related literature

This article contributes to the literature on platform pricing, pioneered by Rochet and Tirole

(2003), Armstrong (2006), and Rochet and Tirole (2006), by estimating distortions in real-world

two-sided markets. I quantify standard inefficiencies from market power and network externalities
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(Weyl 2010; Tan and Wright 2021), and extend the analysis to settings with seller competition

and online/offline substitution. These features, often excluded from canonical models, introduce

new distortions. I formalize these distortions in a stylized model that builds on Rochet and Tirole

(2006) and Weyl (2010), and quantify them using structural estimates from the US food delivery

sector. In studying the welfare consequences of online/offline substitution, I build on Wang and

Wright (2024) and Hagiu and Wright (2025).

The article also assesses the impacts of competition on platform fees. Theoretical work highlights

the importance of multi-homing behaviour in shaping equilibrium fees under platform competition

(e.g., Armstrong 2006; Bakos and Halaburda 2020; Teh et al. 2023). But most empirical studies

of platform pricing omit either two-sided pricing or two-sided multi-homing, with Wang (2023)

as a notable exception.2 Using data on both consumer and restaurant platform use together

with a model that accommodates flexible patterns of multi-homing, I show that the potential for

competition to reduce fee bias depends crucially on merchant multi-homing.

I also analyze food delivery commission caps as a case study in fee regulation. Prior empirical

research on platform regulation focuses on payment cards (e.g., Rysman 2007; Carbó-Valverde

et al. 2016; Huynh et al. 2022; Wang 2012; Evans et al. 2015, Manuszak and Wozniak 2017, Kay

et al. 2018; Chang et al. (2005); Li et al. (2020)). Outside this domain, empirical evidence is

sparse. A notable exception is Li and Wang (2024), who study food delivery caps using difference-

in-differences methods. I extend their work by analyzing welfare using a structural model.

More broadly, this article contributes to a literature assessing digital platforms’ effects on tra-

ditional sectors, including ride-hailing (Castillo Forthcoming; Rosaia 2025; Buchholz et al. 2025;

Gaineddenova 2022), accommodations (Calder-Wang 2022; Farronato and Fradkin 2022; Schae-

fer and Tran 2023), media (Kaiser and Wright 2006; Argentesi and Filistrucchi 2007; Fan 2013;

Lee 2013; Sokullu 2016; Ivaldi and Zhang 2022), and others (Jin and Rysman 2015; Farronato

et al. 2024; Cao et al. 2021). Work on food delivery remains limited (Natan 2024; Lu et al. 2021;

Chen et al. 2022; Feldman et al. 2022; Reshef 2020). I add to this literature by documenting how

merchant competition can erode the intended benefits of regulation.

Last, this article contributes to the literature on pass-through. Assessing the incidence of regulation

requires modelling how commission changes affect consumer fees and restaurant prices. Theoretical

work emphasizes the role of demand curvature in shaping pass-through, motivating my use of a

flexible demand system (Weyl and Fabinger 2013; Miravete et al. 2023). I also build on empirical

evidence from the restaurant industry showing substantial pass-through of cost increases (Cawley

et al. 2018; Allegretto and Reich 2018).

2 Illustrative model

Before introducing the full model, I present a stylized model that clarifies sources of inefficiency in

platform pricing and guides interpretation of the empirics. This model extends the canonical model

of Rochet and Tirole (2006) to account for competition among sellers and substitution between

platform (“online”) and direct (“offline” or “first-party”) ordering.

2For example, Rysman (2004) studies Yellow Pages, which are free to consumers; Song (2021) assumes that
consumers read at most one magazine; Lee (2013) treats prices as exogenous; and Gentzkow et al. (2024) excludes
endogenous consumer fees.
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In the stylized model, a monopolist platform facilitates interactions between buyers and sellers.

The platform charges per-transaction fees c to buyers and commissions rp1 to sellers, where p1 is

the seller’s price on the platform. Sellers also make sales directly to consumers through an offline

channel. Let a denote the benefit that a seller enjoys from an offline sale. The seller’s price p1 may

depend on the commission rate r, and the seller’s marginal cost of fulfilling a platform order is

κ1. Although seller costs vary, the price p1 is assumed constant. The platform’s sales are S1(c, J),

where J is the number of sellers that have joined the platform. To simplify the analysis, I assume

that there is a continuum of sellers and that J is continuous. The number of sellers that join

the platform is in turn determined by J(r, S1), where S1 are the platform’s sales. I assume that

the functions S1 and J admit the inverse demand functions c(S1, J) and r(S1, J). Following Weyl

(2010), I assume that the platform charges fees that ensure coordination on a selected allocation

(S1, J). Throughout, I use the superscripts “pr” and “so” to denote quantities associated with the

allocation maximizing the platform’s profits and social welfare, respectively.

Social welfare has three components: platform profits Λ, consumer surplus CS, and restaurant

profits RP . First, platform profits are

Λ = (c(S1, J) + r(S1, J)p1(r(S1, J)) −mc)S1.

Here, mc is the platform’s marginal cost of facilitating a sale. Consumer surplus is

CS =

∫ S1

0
Y (x, J)dx− (c+ p1)S1,

where Y (S1, J) = c(S1, J) +p1(r(S1, J)) is the marginal consumer’s valuation of platform usage at

sales level S1. Last, restaurant profits are

RP = aS0(S1) + ([1 − r]p1 − κ̄1(J))S1 −KJ.

Here, S0 are total first-party restaurant sales, which I assume depend on online sales. Also, κ̄1 is

the average marginal cost among the first J restaurants to join the platform and K is the fixed

cost of platform membership.

The model enables a comparison between privately and socially optimal consumer fees. The con-

sumer fee maximizing platform profits satisfies

cpr = mc+ µprB − b̃prS , (1)

where µB = −S1/(∂S1/∂c) is the inverse semi-elasticity of consumer demand—a measure of buyer-

side market power—and b̃S = d(rp1S1)/dS1 is the effect of additional platform ordering by con-

sumers on the platform’s commission revenue from restaurants. By contrast, the consumer fee

maximizing social welfare satisfies

cso = mc− b̄soS + aDso,

where b̄S = p1 − κ̄1, the mean benefit to restaurants of a platform sales (before commissions) and

D = −∂S0/∂S1 is the diversion ratio — i.e., the rate at which increases in online sales subtract from

offline sales. Condition (1) requires that the platform’s consumer fee is equal to its marginal cost

plus a standard markup arising from market power (µprB ) and minus an adjustment b̃prS reflecting

that an increase in sales raises the platform’s revenue from the merchant side. The social planner’s

consumer fee cso does not include a market-power markup but instead depends on the positive

externality b̄S that platform sellers enjoy from a platform sale and the negative externality aDso

on restaurants’ offline profits of an additional online order. The difference between the socially
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and privately optimal consumer fees is

cpr − cso = µprB︸︷︷︸
Market power

− aDso︸ ︷︷ ︸
Offline business stealing

+
[
b̄soS − b̃soS

]
︸ ︷︷ ︸

Spence distortion

+
[
b̃soS − b̃prS

]
︸ ︷︷ ︸

Displacement distortion

(2)

This equation shows that, although market power µprB tends to raise the privately optimal consumer

fee above socially optimal levels, the offline business stealing distortion has the opposite effect. The

offline business stealing distortion is relevant because of between-seller competition. To see why,

consider a model in which consumers substitute between platform and direct ordering within each

seller, but in which sellers do not compete with each other — a seller subtracts from its own direct

sales upon joining the platform, but does not reduce competitors’ sales. Then, sellers completely

internalize the impact of its platform sales on its direct sales. Under seller competition, though,

merchants may join platforms to steal offline business from rivals. In this case, a merchant’s

platform membership imposes a negative contractual externality on rivals (Segal 1999, Gomes and

Mantovani 2025). The offline business stealing distortion reflects this externality, which may be

corrected by an increased consumer fee that steers consumers back toward direct ordering.

The equation also features the Spence and displacement distortions that result from network ex-

ternalities (Weyl 2010, Tan and Wright 2021). The Spence distortion reflects that a social planner

internalizes the benefits of attracting new buyers to platform sellers (b̄S) when setting its consumer

fee, whereas a profit-maximizing platform internalizes only the benefits for marginal sellers, given

that it is these sellers who determine the extent b̃S to which the seller earns more seller-side revenue

by attracting more buyers.3 Marginal platform users typically benefit less from interactions with

agents on the other side than do inframarginal users, which suggests a positive Spence distortion.

As noted by Tan and Wright (2021), however, profit-maximizing platform fees are typically inflated

by market power, meaning that their marginal users have higher interaction benefits than those

under the social planner’s allocation and hence b̃soS < b̃prS . The resulting displacement distortion

tends to offset the Spence distortion.

The model also suggests scope for distortion in restaurant commissions. The first-order condition

for the profit-maximizing value of J is

b̃prB = µprS , (3)

where b̃B = ∂c/∂J is the marginal consumer’s valuation of an additional online restaurant and

µprS = −d[rprppr1 ]/dJ is the reduction in commission revenue required to attract another merchant

to the platform, an inverse measure of the platform’s market power on the merchant side. By

contrast, the socially optimal J satisfies

b̄soBS
so
1 = K + (κ̄′)soSso

1 , (4)

where b̄B is the average consumer valuation of an additional platform seller.4

Equation (3) implies that a profit-maximizing platform equalizes the benefits to marginal con-

sumers of an additional restaurant (b̃pr) with commission revenue losses required to attract a

restaurant when assessing a commission reduction. In contrast, equation (4) implies that a social

3With seller competition, the model does not yield the result in Weyl (2010) that b̃S equals the marginal seller’s
benefit from a platform interaction. However, b̃S still reflects how increased sales encourage platform adoption and
thus reflects marginal merchants’ gains from platform sales.

4Formally, b̄B =
∫ S1

0
∂Y
∂J

(x, J)dx/S1.
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planner compares the total benefit b̄soBS
so
1 to consumers of an additional restaurant with the costs

of increased platform membership increased costs of adoption K and increased marginal costs

(κ̄′)soSso
1 .

Although (3) and (4) do not yield a decomposition of distortions à la equation(2), they do indicate

sources of inefficiency in profit-maximizing platforms’ commissions. First, equation (3) implies

that market power µprS tends to raise profit-maximizing commissions. Second, the inclusion of

competition between sellers raises the possibility for socially excessive entry in the spirit of Mankiw

and Whinston (1986): merchants join platforms in part to steal business from rival restaurants

rather than creating value for consumers while incurring fixed costs from platform adoption. The

social planner accounts for these fixed costs K whereas a profit-maximizing platform does not.

This creates scope for the profit-maximizing platform to charge commissions that are too low and

insufficiently deter excessive platform adoption by merchants. Last, b̃prB falling below b̄so due to

Spence and displacement distortions tends to make commissions socially excessive.

To summarize, a complex set of externalities implies that consumer fees and restaurant commissions

may be either too high or too low, both relative to each other and in absolute levels.5 The goal of

this article is to provide a tractable empirical model that captures this complex set of externalities

and permits an evaluation of deviations in platform fees from those that are socially optimal.

Role of platform competition The illustrative model features a monopolist platform and thus does

not capture how platform competition shapes the gap between privately and socially optimal fees.

Online Appendix O.1 describes how the distortions outlined above are extended to a model with

multiple platforms. Furthermore, recent research indicates factors that determine how competition

affects fees. Teh et al. (2023) show that the effect of platform entry on the balance between con-

sumer and merchant fees depends on whether it intensifies competition more on the buyer or seller

side. This, in turn, depends on how entry affects platforms’ residual demand elasticities, platforms

substitutability from the buyer’s perspective, and multi-homing behaviour. One contribution of

this article is to estimate the primitives underlying these forces and assess whether competition

pushes fees toward or away from the efficient allocation.

3 Data and background

3.1 Industry background

The major US food delivery platforms in 2020–2021 were DoorDash, Uber Eats, Grubhub, and

Postmates; their market shares in Q2 2021 were 59%, 26%, 13%, and 2%.6 These platforms fa-

cilitate deliveries of meals from restaurants to consumers, earning revenue from fees charged to

consumers and restaurants. Restaurants also set prices for goods sold on platforms. In sum-

5Merchant internalization, which arises when merchants consider the average consumer surplus from platform use
in choosing whether to join a platform, provides another reason for a fee structure that is unfavourable to merchants
(Wright 2012). Although merchant internalization may be relevant in food delivery, I rule it out in my model by
specifying that restaurants respond to consumer demand but not to inframarginal consumer surplus.

6Uber acquired Postmates in 2020, but did not immediately integrate Postmates into Uber Eats.
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mary,

Consumer Bill = p+ c

Restaurant Revenue = (1 − r)p

Platform Revenue = rp+ c,

where p is restaurant’s price, c is the fee, and r is the commission rate. Average order values

before fees, tips, and taxes were slightly below $30 across platforms in Q2 2021. I take it that

the commission rates for all leading platforms were 30% in areas without caps based on the facts

that Uber Eats and Grubhub advertised 30% commissions in 2021 and DoorDash’s full-service

membership tier featured 30% commissions in April 2021. It is possible that restaurant chains

negotiated lower commissions, although I do not observe their contracts with platforms.

Each platform charges various fees that together constitute the consumer fee c. These include

delivery, service, and regulatory response fees (e.g., the “Chicago Fee” of $2.50 per order that

DoorDash introduced in response to Chicago’s commission cap). Service fees—unlike the other

fees—are often proportional to order value. There are reasons for platforms to use both fixed and

proportional fees. Fixed fees better reflect cost structure—driver costs do not scale with order

value—whereas proportional fees reduce merchant markups and enable price discrimination when

consumer willingness to pay scales with cost (Shy and Wang 2011, Wang and Wright 2017). A

hybrid structure may thus be optimal. Online Appendix O.2 discusses these mechanisms in detail.

In the interest of tractability and focus on the division between consumer and merchant fees, I

specify a purely fixed consumer fee in my model.

Restaurants that adopt delivery platforms control their menus on these platforms. Their prices on

platforms need not equal their prices for direct-from-restaurant orders. Additionally, restaurants

typically make an active choice to be listed on platforms.7 It is common for restaurant locations

belonging to the same chain to belong to different combinations of online platforms.

Both restaurants and consumers multi-home (i.e., use multiple platforms). As described by Online

Appendix Table O.4. over half of restaurants on DoorDash belong to Uber Eats. Furthermore,

consumers sometimes switch between platforms across orders.

In focusing on platform fees, I abstract away from some features of delivery platforms. Although

I model consumers and restaurants, delivery also involves couriers. Rather than model couriers,

I specify platform marginal costs of fulfilling deliveries that capture courier compensation.8 In

addition, I do not consider restaurants’ first-party delivery services separately from their in-store

services. This is because first-party delivery has been a minor part of the restaurant industry since

the rise of food delivery platforms. I find, using the Numerator data described in Section 3.2, that

only 2.6% of first-party restaurant sales were delivered in 2019–2021.

Many local governments introduced commission caps in a staggered fashion after the beginning

of the COVID-19 pandemic. Over 70 local governments representing about 60 million people had

enacted commission caps by June 2021. Most caps—78% of those introduced before 2022—limited

commissions to 15%, although some limited commissions to other levels between 10% and 20%.

7Some platforms list restaurants without their consent, although this practice has decreased in popularity and
has been outlawed in several jurisdictions. See Mayya and Li (Forthcoming) for a study of nonconsensual listing.

8Fisher (2023) finds that courier surplus from gig work in UK food delivery equals about one third of courier
wages. This suggests courier welfare impacts of commission regulation that are not accounted for in my study.
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Most caps began as temporary measures, but several jurisdictions later made their caps permanent.

Some commission caps (19% of those introduced before 2022) excluded chain restaurants. I take

these caps’ exemption of chains into account in estimating the article’s model, although I focus on

the more popular form of cap that does not exempt chains in the counterfactual analysis.

Online Appendix Figure O.2 plots the average fees and commission charges over time. Commission

revenue consistently exceeded consumer fee revenue in places without caps: at the beginning of

2020, platforms earned on average $6–8 from restaurant commissions and $4–5 from consumer fees

per order. But the disparity in consumer and restaurant fees contracted in placed with caps.

3.2 Data

Transactions data. This article uses several data sources, the first of which is a consumer panel

provided by the data provider Numerator covering 2019–2021. Panelists report their purchases

to Numerator through a mobile application that (i) integrates with email applications to collect

and parse email receipts and (ii) accepts uploads of receipt photographs. I use Numerator records

for restaurant purchases whether placed through platforms or directly from restaurants (including

orders placed on premises, pick-up orders, and delivery orders). At the panelist level, these data

report ZIP code of residence and demographic variables. At the transaction level, they report basket

subtotal and total, time, delivery platform used (if any), and the restaurant from which the order

was placed. At the menu-item level, they report menu item names (e.g., “Bacon cheeseburger”),

numeric identifiers, categories (e.g., “hamburgers”), and prices.

Numerator provides receipt data for all of its users, but I use only receipts from members of its

core panel in most of the empirical analysis. The demographic composition of this core panel is

intended to match that of the US adult population. Using data from the American Community

Survey (ACS), I find that the demographic profile of the core panel matches the US adult population

fairly well.9 In addition, market shares computed from these data are similar to those computed

from an external dataset of payment card transactions; see Online Appendix O.4 for details.

The market definition that I use throughout this article is a metropolitan area, formally a Core-

Based Statistical Area (CBSA). I focus on the fourteen large metro areas for which I have detailed

fee data: Atlanta, Boston, Chicago, Dallas, Detroit, Los Angeles, Miami, New York, Philadelphia,

Phoenix, Riverside/San Bernardino County, San Francisco, Seattle, and Washington. In Q2 2021,

there are 58,208 unique consumers and 447,846 transactions in the sample for these metros. Figure

1 provides platform market shares in each of these metros for Q2 2021.

I supplement the Numerator data with platform/ZIP/month-level estimates of order volumes and

average fees for January 2020 to May 2021.10 Edison provides these estimates, which are based

on a panel of email receipts.11 This dataset also includes estimates of average basket subtotals,

delivery fees, service fees, taxes, and tips.

9The main exceptions are that individuals younger than 35, individuals older than 64, and high income individuals
(over $125,000 family income) are somewhat underrepresented: their shares in the Numerator panel are 21%, 13%,
and 20% whereas their shares in the ACS are 29%, 22%, and 29%. Shares are similar between Numerator and the
ACS for marital status, presence of children in household, and race/ethnicity.

10I use ZIP rather than ZCTA as shorthand for “ZIP code tabulation area” in this article.
11The panel includes 2,516,994 orders for an average of about 148,000 orders a month.
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Platform adoption. I obtain data on restaurants’ platform adoption decisions from the data provider

YipitData. These data record all US restaurants listed on each major platform in each month from

January 2020 to May 2021.12 I obtain data on offline-only restaurants from Data Axle, which pro-

vides dataset of a comprehensive listing of US business locations for 2021. In the 14 large metros

on which I focus, there were 69,245 restaurants belonging to chains with at least 100 US locations

and 354,614 independent restaurants in 2021. Figure 2, which plots the share of these restau-

rants adopting each possible combination of the four leading platforms in April 2021 within the 14

large metro areas that I will analyze in the empirical analysis, shows that both non-adoption and

multi-homing among platform adopters are common in the data.

Figure 1: Market shares, Q2 2021
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Notes: the figure displays reports metro-specific shares
of expenditure on DoorDash, Uber Eats, Grubhub, and
Postmates orders in the Numerator panel for Q2 2021.

Figure 2: Distribution of restaurants across
platform sets, April 2021

All
Uber, GH, PM

DD, GH, PM
DD, Uber, PM
DD, Uber, GH

GH, PM
Uber, PM
Uber, GH

DD, PM
DD, GH

DD, Uber
PM
GH

Uber
DD

None

All
Uber, GH, PM

DD, GH, PM
DD, Uber, PM
DD, Uber, GH

GH, PM
Uber, PM
Uber, GH

DD, PM
DD, GH

DD, Uber
PM
GH

Uber
DD

None

0.0 0.1 0.2 0.3 0.4 0.5

Notes: this figure plots the distribution of restaurants
across sets of platforms in the 14 metros of focus in
April 2021. Deeper shades indicate sets that include
more platforms. The total number of restaurants used
to construct the figure is 426,058.

Platform fees. I collect data on platform fees in 2021 using a procedure that involves drawing from

the set of restaurants in a ZIP and inquiring about terms of a delivery to an address in the ZIP for

ZIPs in the 14 metros listed above. The address is obtained by reverse geocoding the coordinates

of the ZIP’s centre into a street address. Other variables that I record include time of delivery,

delivery address, and estimated waiting time. I followed an analogous procedure to collect data

on service fees and regulatory response fees; this procedure involves entering an address near the

centre of a ZIP, randomly choosing a restaurant from the landing page displayed after entering this

address, and inquiring about terms of a delivery from the restaurant.

The resulting fee data provides the basis of the consumer fee indices cfz that I use in estimating the

model. These indices, which vary across platforms f and ZIPs z, are sums of (i) hedonic indices of

delivery fees that capture systematic differences in these fees across geography and platforms, (ii)

service fees, and (iii) regulatory response fees introduced in response to commission caps and other

12Note that I estimate my consumer choice model on data from Q2 2021. Because I lack data on restaurant
platform adoption in June 2021, I use the May 2021 platform adoption data for both May 2021 and June 2021.
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local regulations. Online Appendix O.5 provides details on the computation of these indices.

I also collect data on commission caps including start and end dates covering January 2020 to June

2021 based on a review of news articles. The dataset includes 72 caps active in March 2021.

Demographics. The article also use demographic data from the American Community Survey

(ACS, 2014–2019 five-year estimates).

3.3 Restaurant prices

I construct restaurant price indices that vary across platforms and commission rate. Given my

focus on platform fees, I specify a detailed model of platforms with a stylized representation of

restaurants that abstracts from menu item or quality variation. As such, I design the price indices

to capture the pricing dimensions most relevant to platform fees: differences between online and

offline orders and responses to commissions. The indices take the form

pfzt = p̄× exp {ϕf + βrfz + γrz × onlinef} . (5)

Here, p̄ governs the overall price level across ZIPs z, months t, and platforms f ; ϕf captures

differences in prices on platform f relative to direct orders (f = 0); β captures how the commission

rate rz affects prices for direct orders; and γ governs how the commission rate affects prices for

platform orders (onlinef = 1{f ̸= 0}). The commission rate rz is defined to be 30% in areas

without commission caps and equal to the cap level in areas with commission caps. The formula

(5) allows for systematic differences in restaurant prices across platforms f and for commissions

to differentially affect direct and platform prices.

I estimate the parameters appearing in (5) via a regression with item, restaurant, and regional

fixed effects on the item-level Numerator data. This regression exploits the staggered adoption of

commission caps. Appendix A provides details. To summarize, I find that a one percentage point

increase in the commission rate raises a restaurant’s online prices by 0.63% and does not have a

statistically significant effect on a restaurant’s prices for direct orders. Under 30% commissions,

restaurant prices on DoorDash are predicted to exceed direct-order prices by 14%; under 15%

commissions, this gap narrows to 4%. I collect supplementary data on prices directly from restau-

rants’ websites and platform listings that corroborates these findings; see Online Appendix O.6 for

details. Last, I do not find substantial differences in prices across the leading platforms.

Price reductions from commission caps could reflect both pass-through of commission reductions

and increased competition within platforms, given that caps may encourage platform adoption by

restaurants. The article’s model will capture both of these mechanisms.

Frictionless transfers between buyers and sellers may make the platform’s division of fees between

buyers and sellers irrelevant. This situation is called neutrality in the literature on two-sided

pricing. I elaborate on sources of non-neutrality in Section 4.3.

3.4 Effects of commission caps

Although the focus of this article is in using a structural model of platform markets to assess the

welfare implications of platform fees, I also estimate impacts of commission caps on consumer fees,

order volumes, and restaurant uptake of platforms using difference-in-differences (DiD) methods.
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The goal of this analysis is to validate hypothesized fee, ordering, and platform adoption responses

to commission regulation that play a central role in determining the welfare properties of platform

fees. Here, I describe the methods and results in brief, relegating a detailed discussion of the DiD

analysis to Online Appendix O.7.

I use a variety of difference-in-differences methods in the analysis but focus on results from the

Interaction Weighted (IW) estimator of Sun and Abraham (2021) here. This estimator, which yields

estimates of the effects of commission caps on places that introduced caps, corrects problems that

arise in the classical two-way fixed effects estimator when treatment is staggered and treatment

cohorts vary in their treatment effects. The cross-sectional units in the analysis are ZIPs and the

time periods are months. The primary identifying assumption underlying DiD estimation is that,

conditional on controls, the outcome in places that enacted commission caps would have followed

the same trend as in places that never enacted caps if caps had not been imposed. To make

this assumption more tenable, I control for variables related to COVID-19 that may affect both

government decisions to enact commission caps and outcomes of interest. The controls include the

number of new COVID-19 cases per capita in ZIP z’s county in month t, a measure of the stringency

of state government responses to COVID-19 (Hallas et al. 2020), and the number of new COVID-19

cases per capita interacted with the Democrat vote share in the 2020 US presidential election. I

include this interaction because places with different political proclivities may differentially respond

to COVID-19 severity. The treatment variable specified in the baseline analyses is an indicator

for a ZIP having a commission cap of 15% or lower.13 I use data from January 2020 to June

2021, although I provide results for alternative sample periods in Online Appendix O.7. Online

Appendix O.7 also contains results for different treatment variables and control groups.

Table 1 summarizes the results. The rows labelled “Consumer fees” provide estimated effects

on log average consumer fees. These estimates, which range from 0.069 to 0.249, suggest that

platforms do in fact raise their consumer fees when deprived of merchant commission revenue. The

rows labelled “# orders” provide estimated effects on the log number of orders placed on delivery

platforms (“Platform”) and on the log number of direct orders (“Direct”). The results indicate

that commission caps reduced the number of orders placed on platforms by about 6.1% and raised

the number of orders placed directly from restaurants by 4.5%, suggesting that consumer fee hikes

led consumers to substitute from platform ordering to direct ordering. Last, the “# restaurant

listings” row provides estimates of effects of commission caps on the number of restaurant listings

on platforms per capita. Here, a listing is a restaurant’s membership of a platform; a restaurant on

both DoorDash and Grubhub, for example, would have two listings. I divide the estimated effect

by the mean number of listings per capita so that it may be interpreted as a relative percentage

effect. I find that the number of restaurant listings per capita increased by 8.8%, suggesting that

commission reductions encouraged more restaurants to join food delivery platforms.

Although the responses described by Table 1 are consistent with the theory of pricing in two-sided

markets, their welfare implications are unclear; restaurants, e.g., may earn higher profits due to

commission reductions but suffer from sales reductions and increased fixed costs of platform adop-

tion. My goal in developing a model is to account for a complex set of responses to fee regulation

in a tractable way and, in doing so, determine the welfare implications of such regulation.

13I focus on caps of 15% or lower because 15% is the most common level of caps. I exclude ZIPs with caps greater
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Table 1: Difference-in-differences estimates of effects of commission caps

Outcome Unit Estimate SE

Consumer fees
DD log points 0.249 (0.041)

Uber log points 0.069 (0.040)

GH log points 0.127 (0.148)

# orders
Platform log points -0.061 (0.025)

Direct log points 0.045 (0.010)

# restaurant listings %/100 0.088 (0.009)

Notes: all estimates in the table are from the Interaction Weighted (IW) estimator of Sun and Abraham (2021).
The results for consumer fees appear among those for additional estimators in Online Appendix Table O.11. The
results for order volumes appear among those for additional estimators in Online Appendix Figure O.7. The result
for restaurant listings appears in the “Total listings” row of the “IW” column of Online Appendix Table O.21, which
includes table notes that provide additional details on the estimation procedure.

4 Model

4.1 Summary of model

I develop a model of platform competition to empirically analyze the welfare properties of platform

fees. Competition in each metro area m is a separate game played by platforms and restaurants.

The model’s treatment of platforms is detailed whereas its treatment of restaurants is stylized:

restaurants systematically differ only in their location (ZIP z) and type (chain versus independent).

I distinguish between chain and independent restaurants to allow the model to capture commission

caps that exempt chains, which appear in the estimation sample. Each platform, though, has fees,

restaurant networks, waiting times, and consumer demand shocks that vary across geography.

When it comes to estimation, I match consumers’ choices of platforms rather than restaurants.

Further, I use detailed platform-specific fee data but restaurant price indices that apply to types

of restaurants rather than individual establishments.

The model has four stages. In the first stage, platforms choose commission rates and consumer fees

to maximize profits. Restaurants subsequently join platforms. Upon joining platforms, restaurants

set prices. Last, consumers choose what to eat. I assume that consumers do not incur costs

for adopting platforms, which explains the lack of a consumer platform adoption stage. This

assumption is based on the ease with which consumers can join platforms: it is free for consumers

to join platforms; platform apps are available for fast installation on mobile devices; users can

use single-sign-on accounts (e.g., Google, Facebook, or Apple) to create accounts with minimal

hassle; and users can use mobile payments (e.g., Apple Pay) to avoid manually inputting payment

information. Based on the ease of creating an account, it would seem unnatural to specify that

the consumer must commit to a list of platforms to join before placing orders. With that said,

downloading an app and creating an account impose at least some adoption costs. On balance,

though, a model without a stage in which consumers adopt platforms fits the setting better.

Two-sided market models often feature multiple equilibria due to network externalities: participa-

tion on each side depends on expectations about participation on the other, which can give rise to

both low- and high-adoption equilibria. This concern does not arise when consumers can access all

platforms without prior adoption, eliminating the risk that restaurants that foresee low consumer

than 15% from the analysis.
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participation opt out (and vice versa). Online Appendix O.8 provides a detailed argument.

Although the model captures many central features of the food delivery industry, it abstracts away

from others. I assume that consumers have full information of alternatives, and I treat the set of

restaurants as fixed. Most significantly, the model is static despite the non-stationary nature of

the food delivery industry during the sample period. Section 5 (“Estimation”) notes how this may

bias my estimates. Here, I highlight two key areas in which I omit dynamic considerations. First,

platforms may have dynamic considerations in fee-setting: they may consider how contemporaneous

sales and restaurant adoption affect future profitability due to state dependence among platform

users and the dynamic nature of competition (e.g., depriving a rival of sales may prompt that rival’s

exit). My model will not speak to the associated pricing incentives. Second, restaurants may face

sunk costs for adoption platforms, making their platform adoption decisions history-dependent and

forward-looking. On accounting of ignoring these dynamics, I may understate the persistence of

adoption and overstate the responsiveness of restaurants to contemporaneous fee changes.

The remainder of this section details the model stages in reverse order.

4.2 Consumer choice

Consumer i contemplates ordering a restaurant meal at T occasions each month. In each occasion

t, the consumer chooses whether to order a meal from a restaurant j or to otherwise prepare a

meal, an alternative denoted j = 0. A consumer who orders from a restaurant chooses both (i)

a restaurant and (ii) whether to order from a platform f ∈ F or directly from the restaurant,

denoted f = 0. Let Gj ⊆ F denote the set of platforms on which restaurant j ̸= 0 is listed; I

call Gj restaurant j’s platform subset. The consumer chooses a restaurant/platform pair (j, f)

among pairs for which (i) restaurant j is within five miles of the consumer’s ZIP and (ii) f ∈ Gj

to maximize

vijft =


ψif − αipjf + ηi + ϕiτ(j) + νijt, j ̸= 0, f ̸= 0 (Restaurant order via platform)

−αipj0 + ηi + ϕiτ(j) + νijt, j ̸= 0, f = 0 (Direct-from-restaurant order)

νi0t, j = 0 (Home-prepared meal).

Here, ψif is consumer i’s taste for platform f , pjf is restaurant j’s price on platform f , ηi is the

consumer’s taste for restaurant dining, ϕiτ(j) is consumer i’s tastes for a restaurant of type τ(j),

and νijt is consumer i’s idiosyncratic taste for restaurant j in ordering occasion t (assumed iid

Type 1 Extreme Value). The types τ(j) that I consider are independent and chain restaurants.

Additionally, αi is consumer i’s fee/price sensitivity, which I specify as

αi = α+ α′
ddi,

where di are observable consumer characteristics including indicators for age under 35 years, for

being married, and for having a household income above $40k.

Consumer i’s tastes ψif for platform f are

ψif = δfm − αicfz − ρWfz + λ′fdi + ζif .

for f ̸= 0. Here, δfm is a parameter governing the mean taste of consumers in metro m for

platform f ; cfz is platform f ’s fee to consumers in ZIP z; and Wfz is a hedonic waiting time index.
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Additionally, the ζif are persistent idiosyncratic tastes for platforms, specified as

ζif = ζ†i + ζ̃if ,

where ζ†i ∼ N(0, σ2ζ1) and ζ̃if ∼ N(0, σ2ζ2) independently of all else. Here, ζ†i governs tastes for the

online ordering channel in general whereas ζ̃if governs tastes for particular platforms f . The σ scale

parameters govern substitution patterns. As σ2ζ1 grows large, e.g., consumers become polarized in

their tastes for food delivery platforms. This reduces the substitutability of platform ordering and

direct ordering. Note that, if consumers differ in their initial enrolments in platforms and incur

adoption costs for joining food delivery platforms, then the ζ̃if preference shocks would capture

the identifies of the platforms that the consumer has already joined and the costs of joining other

platforms.

I specify consumer i’s taste for restaurant meals ηi as

ηi = µηm + λ′ηdi + η†i ,

where µηm governs average tastes for restaurant dining in metro m, di are consumer characteristics,

and η†i is consumer i’s idiosyncratic taste for restaurant dining. I specify that η†i ∼ N(0, σ2η)

independent of all else. Last, I specify ϕiτ = ϕ̄τ + ϕ̃iτ , where ϕ̃iτ ∼ N(0, σ2ϕ).

4.3 Restaurant pricing

The two-sided markets literature recognizes that transfers between platform users can render the

division of platform fees between sides of the market irrelevant for real outcomes, a situation known

as neutrality. I reject that food delivery fees are neutral given the difference-in-differences evidence

that commission caps had real effects on sales and platform adoption.

Non-neutrality requires frictions that limit seller pricing. Three sources of frictions stand out in

the food delivery context: platform encouragement of low prices, mis-optimization, and brand

image. First, food delivery platforms encourage restaurants to charge relatively low prices for

platform-facilitated deliveries and to minimize gaps between in-store and delivery prices.14 Sec-

ond, restaurant managers may suboptimally price on platforms. This possibility has support in

the literature: Huang (2024) studies pricing by platform sellers on an accomodations platform,

finding that prices do not optimally respond to market conditions largely on account of limits in

managerial ability to use sophisticated pricing strategies. Additionally, Hobijn et al. (2006) provide

evidence of menu costs among restaurants, which would imply incomplete adjustment to changes

in commissions. Third, consumers may harbour negative sentiment toward restaurants that charge

higher prices online, thus harming these restaurants’ brand image.15 DellaVigna and Gentzkow

(2019) suggest that brand image concerns could explain uniform pricing among US retailers.

Rather than analyze explanations for non-neutrality in detail, I specify a pricing model that gives

rise to non-neutrality in a reduced-form manner. In the model, restaurants incompletely account

14DoorDash’s merchant support page, for instance, noted that “While DoorDash doesn’t require deliv-
ery prices to match in-store prices, we [DoorDash] recommend restaurant price their delivery menu as
close to their in-store menu as possible.” See here: https://help.doordash.com/merchants/s/article/

How-to-Maximize-Visibility-and-Order-Volume-on-DoorDash?language=en_US. DoorDash also published an an-
nouncement on June 30, 2023 that similarly describes its policy on non-parity: https://about.doordash.com/

en-us/news/menu-pricing. Uber Eats stated in a media comment that “We strongly encourage restaurant partners
to provide the best price possible for consumers while ensuring they have a compelling business opportunity.”

15This possibility is supported by work in behavioural marketing, including Fassnacht and Unterhuber (2016) and
Choi and Mattila (2009).

17

https://help.doordash.com/merchants/s/article/How-to-Maximize-Visibility-and-Order-Volume-on-DoorDash?language=en_US
https://help.doordash.com/merchants/s/article/How-to-Maximize-Visibility-and-Order-Volume-on-DoorDash?language=en_US
https://about.doordash.com/en-us/news/menu-pricing
https://about.doordash.com/en-us/news/menu-pricing


for platform commissions in pricing, thus limiting the extent of pricing responses to commission

rates. An alternative model is one in which restaurants place a negative weight on the difference

between platform and direct-order prices in their pricing objective functions. Such a model better

describes platform discouragement of gaps in prices between delivery and in-store orders. However,

it would do a worse job of describing menu costs. As noted at the end of this section, I consider

both models and find that one of incomplete accounting of commissions better fits the data.

I now formally present the restaurant pricing model. Each restaurant sells a standardized menu

item. It selects this item’s price for first-party orders and separately for each platform to which it

belongs. In setting prices, restaurants seek to maximize profits with the proviso that they do not

entirely internalize platforms’ commission charges in pricing.

Formally, let p∗jf denote the equilibrium price set by restaurant j on platform f . Equilibrium prices

solve

p∗j = arg max
pj

∑
f∈Gj

[(1 − ϑrf )pjf − κjf ]Sjf , (6)

where κjf is restaurant j’s marginal cost of fulfilling an order on platform f , p−j are other restau-

rants’ prices, and Sjf = Sjf (Jm, pj , p
∗
−j) (arguments omitted above for brevity) are restaurant j’s

sales on platform f .16 Given the small share of direct orders accounted for by first-party delivery,

the marginal cost parameter κj0 primarily reflects the restaurant’s costs of in-store sales. I impose

that restaurant marginal costs are constant within a ZIP/restaurant type pair. The parameter ϑ

governs the extent to which restaurants account for platforms’ commission charges in their pricing

decisions: ϑ = 1 corresponds to full accounting of commissions whereas under ϑ = 0, restaurants

set prices that maximize the profits they would earn absent commissions. Although restaurant

prices maximize the objective function (6) with incomplete accounting of commissions, restaurant

profits include platform commissions fully; see equation (7).

An alternative way to model frictions in restaurant pricing is to add a penalty of the form

ϑ
∑

f (pjf − pj0)
2 for gaps between platform and direct prices to the objective function in equation

(6). I estimated a model of this form, but found that it implied a significant positive relation-

ship between commissions and direct-order prices. Given that I did not find evidence of such a

relationship in the item-level price data (see Appendix A), I decided against using this model.

Online Appendix O.9 explicitly compares the impacts of commission reductions on prices under

the preferred model described by (6) and the alternative model.

4.4 Restaurants’ platform adoption choice

Restaurants simultaneously choose which platforms to join in a positioning game in the spirit of

Seim (2006). A restaurant j’s expected profits from joining platforms G are

Πj(G, Pm) = EJm,−j

∑
f∈G

[(1 − rfz))p
∗
jf (G,Jm,−j) − κjf ]Sjf (G,Jm,−j , p

∗) | Pm


︸ ︷︷ ︸

:=Π̄j(G,Pm)

−Kτ(j)m(G). (7)

The expectation in (7) is taken over rivals’ platform adoption decisions Jm,−j , which are unknown

to restaurant j when it chooses which platforms to join. I use Π̄j(G, Pm) to denote expected

16Online Appendix O.11 provides an expression for sales Sjf .
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variable profits, i.e., the first term on the righthand side of (7). Rival restaurants’ decisions are

determined by the probabilities Pm = {Pk(G) : k,G} with which rival restaurants k choose each

platform subset. Additionally, Kτ(j)m(G) is the fixed cost of joining platforms G for a restaurant

of type τ(j) in metro m. Restaurants correctly anticipate the prices pjf that arise in the model’s

downstream stages. The fixed costs Kτ(j)m(G) do not represent payments to platforms. Instead,

they include costs of contracting with platforms; in maintaining a menu on platforms; and in

training staff to interface with platforms. By specifying a separate cost for each platform subset G,

I allow for diminishing costs of joining additional platforms. Additionally, I normalize Kτm({0})

to zero for each type τ and for each metro m.

Restaurant j’s adoption decision maximizes the sum of expected profits and a disturbance ωj(G)

representing misperceptions or non-pecuniary motives for adoption:

Gj = arg max
G:0∈G

[Πj(G, Pm) + ωj(G)] . (8)

In the welfare analysis, I do not count the ωj(G) toward restaurant profits.

A platform adoption equilibrium is a sequence of probabilities P ∗
m = {P ∗

j (G)}j,G such that

P ∗
j (G) = Pr

(
G = arg max

G′
Πj(G′, P ∗

m) + ωj(G′)

)
(9)

for all restaurants j in market m and for all platform subsets G. The right-hand side of (9) is the

probability that restaurant j’s best response to rivals’ choice probabilities P ∗
m is to join platform

subset G. Thus, an equilibrium is a sequence of choice probabilities that arise when restaurants’

best responses to each other’s choice probabilities give rise to these choice probabilities. Condition

(9) defines P ∗
m as a fixed point, and Brouwer’s fixed point theorem ensures the existence of an

equilibrium. Although existence is ensured, an equilibrium may not be unique. In practice, I do

not find multiple equilibria at the estimated parameters.17

I specify restaurants’ platform adoption disturbances as

ωj(G) =
∑
f∈G

σrcω
rc
jf + σωω̃j(G), (10)

where ωj(G) are Type 1 Extreme Value deviates drawn independently across j and G. Additionally,

the ωrc
jf are standard normal deviates drawn independently across restaurants and platforms. The

parameter σω governs the variability of platform-subset-specific idiosyncratic disturbances, whereas

σrc governs the extent to which platform subsets are differentially substitutable based on their

constituent platforms.

My use of a Seim (2006) positioning game is justified by the facts that (i) equilibria of the game are

easier to find than Nash equilibria in complete information games and (ii) complete information

entry games suffer from problems related to multiplicity of Nash equilibria reflecting non-uniqueness

17In each metro area, I compute equilibria using the algorithm outlined in Online Appendix O.13 from the following
initial choice probabilities: (i) the ZIP-specific empirical frequencies of restaurants’ platform choices, (ii) probability
one of restaurants not joining any platform, (iii) probability one of restaurants joining all platforms, and (iv) the ZIP-
specific empirical frequencies of restaurants’ platform adoption choices randomly shuffled between platform subsets
within each ZIP. I find the same equilibrium in each market using each of these starting points.
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in the identities of players that take particular actions. These problems do not arise in my model.

One critique of Seim (2006)-style positioning models is that they give rise to ex post regret: after

players realize their actions, some players would generally like to change their actions in response

to other players’ actions. This is not a considerable problem here because the large number of

restaurants leaves little uncertainty in restaurant payoffs.18

4.5 Platform fee setting

In the first stage of the model, each platform f simultaneously chooses its ZIP-level consumer fees

{cfz}z and its restaurant commission rate rfm to maximize its expected profits.

Platform f ’s expected profits are

Λfm =
∑
z∈Z

EJm [( cfz︸︷︷︸
Consumer

fee

+ rfz︸︷︷︸
Commission

rate

p̄∗fz︸︷︷︸
Restaurant

price

− mcfz︸ ︷︷ ︸
Marginal

cost

) × sfz(cz,Jm)︸ ︷︷ ︸
Sales

], (11)

where sfz are platform f ’s sales in ZIP z and rfz = min{rfm, r̄z}. Here, r̄z is the commission

cap level in ZIP z and r̄z = ∞ in ZIPs z without caps. The quantity p̄∗fz is the sales-weighted

average price charged by a restaurant for a sale on f in ZIP z. Each platform f ’s profits in a

ZIP z depend on its marginal costs mcfz, which represent compensation to couriers. Marginal

costs may vary across ZIPs due to regional differences in labour demand and supply conditions.

I assume that platforms are price-takers in local labour markets and that their marginal costs do

not depend on order volumes. The expectations in (11) are taken over the equilibrium distribution

of platform adoption choices Jm, which are governed by the P ∗
m probabilities that in turn depend

on platform fees. Given that Uber owns both Uber Eats and Postmates, I specify that Uber Eats

and Postmates instead maximize their joint expected profits.

5 Estimation

5.1 Estimation of the consumer choice model

Estimation proceeds in steps. The estimator of consumer preferences maximizes the likelihood of

consumers’ observed sequences of platform choices conditional on covariates. In this model, each

consumer i places Ti ≤ T orders from restaurants. Recall that T is the maximum number of orders

per month in my model. In practice, I define each panelist/month pair as a separate consumer, and

set T = 17 to the 99th percentile of the number of monthly orders placed by a panelist. The sample

includes Numerator core panelists who place at least one order in Q2 2021, excluding consumers

who place over T orders. In addition, I restrict the sample to panelists who linked their e-mail

accounts to the application that the data provider used to collect e-mail receipts. This leaves a

sample of 29,958 panelist/month pairs. The objective function is

 L(θ, Yn, Xn) =
n∑

i=1

log

∫ Ti∏
t=1

ℓ(fit | xi, wm(i),Ξi; θ) ×
T∏

t=Ti+1

ℓ0(xi, wm(i),Ξi; θ)dH(Ξi; θ)

 , (12)

18Formally, for any sequence of choice probabilities {PJ,m}∞J=1 indexed by the number of restaurants J , the
difference between the share of restaurants joining each platform subset (as encoded in Jm) and Pz(Gj) converges
to zero almost surely due to the strong law of large numbers. Thus, for a large number of restaurants, the integrand
in the definition of Π̄j is approximately constant across Jm,−j draws, leaving little scope for ex post regret.
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where n is the sample size, Yn = {fit : 1 ≤ t ≤ Ti, 1 ≤ i ≤ n} contains each consumer’s selected

platform fit across ordering occasions. Similarly, Xn = {xi, wm(i)}ni=1 contains consumer charac-

teristics xi (age, marital status, and income) and characteristics wm(i) of the consumer’s metro

area m(i), including fees, waiting times, and prices. The random vector Ξi, which is distributed

according to H, includes the platform tastes ζi, restaurant dining tastes ηi, and restaurant-type

tastes ϕ̃iτ . Additionally, ℓ(f | x,Ξ; θ) is the conditional probability that a consumer orders using

f (either a platform or f = 0, the direct option) whereas ℓ0(x,Ξ; θ) is the conditional probability

that the consumer does not order. Online Appendix O.11 provides expressions for ℓ and ℓ0.

As the integral in (12) does not have a closed form, I approximate it by simulation with 500 draws

of Ξi for each consumer. Last, estimation on data from all markets is computationally difficult

due to the large number of fixed effects. I therefore estimate the model on data from the largest

three metros: those of New York, Los Angeles, and Chicago. I subsequently estimate δfm and

µηm for each remaining metro m by maximizing (12) on data from metro m with respect to these

parameters, holding fixed the other parameters at their estimated values.

The estimator maximizes the likelihood of observed platform choices, not joint choices of platforms

and restaurants. The main reason for using such an estimator is that there are many combina-

tions of restaurants and platforms, even upon aggregating restaurants to the level of a ZIP and

type (chain or independent). This means that there are many joint choice outcomes with small

probabilities, which are difficult to simulate accurately. Although the estimator circumvents this

problem, it does not fully take advantage of the data on restaurant choice.

Identification. The primary endogeneity problem is that unobserved demand shifters affect both

demand and fees. My solution is to estimate the demand shifters δfm as fixed effects, a solution that

relies on the assumption that the demand shifters affect demand at the metro level but not at more

granular levels of geography. With platform/metro fixed effects specified, estimation of consumer

fee sensitivity relies on within-metro fee variation. Fee variation owes to variation in commission

cap policies and in local demographics. Note that platform/metro fixed effects similarly address

the endogeneity of platforms’ restaurant networks.

The data’s panel structure permits identification of the scale parameters σζ1, σζ2, and ση governing

heterogeneity in tastes for platforms and restaurant dining. Recall that consumer i’s persistent

unobserved tastes for platform f are ζif = ζ†i + ζ̃if , where ζ†i ∼ N(0, σ2ζ1) and ζ̃if ∼ N(0, σ2ζ2).

When σζ1 is large, consumers are polarized in their tastes for ordering through platforms. This

leads consumers to either repeatedly order meals through platforms or repeatedly order meals

directly from restaurants. Repetition in the choice to order through a platform is consequently

informative about the value of σζ1. Similarly, a large value of σζ2 implies that consumers are

polarized in their tastes for individual platforms and tend to repeatedly choose the same platform,

whereas a low value of σζ2 generates switching between platforms. Thus, repetition in choice

is informative about σζ2. Heterogeneity across consumers in the number of orders placed from

restaurants is similarly informative about the value of ση.

Note that the model rules out state dependence as an explanation for persistence in ordering.

Another potential problem is that identification of substitution patterns relies on the assumption

that tastes ζif are stable across orders, which may not have held during 2021 when food delivery
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was quickly evolving due to the COVID-19 pandemic. If preferences evolved rapidly, then observed

switching behaviour may reflect shifting preferences rather than substitutability, leading the model

to overstate the degree of substitution across restaurants or platforms.

The model additionally rules out restaurant selection into platform adoption based on demand-

side factors other than chain status or geography. This assumption would be violated by, e.g.,

unobservably higher quality restaurants being more likely to join platforms. In this case, consumers

may be more likely to order from platforms because of the high quality of their restaurants, not due

to platform quality as captured by ψif . Thus, selection by high quality restaurants into platform

membership could bias upward my estimates of platform quality.

5.2 Estimation of restaurant pricing model

Recall that a restaurant j belonging to the platforms Gj sets its prices to maximize the objective

function in (6), which features incomplete accounting of commissions. For expositional convenience,

I introduce r0 = 0 as the commission rate for direct-from-restaurant orders. When where Gj =

{f1, . . . , fk}, the restaurant’s pricing first-order condition is


(1 − ϑrf1)Sjf1

...

(1 − ϑrfk)Sjfk


︸ ︷︷ ︸

=S̃j(ϑ)

+


∂Sjf1

∂pjf1

∂Sjf2

∂pjf1
. . .

∂Sjfk

∂pjf1

...
...

. . .
...

∂Sjf1

∂pjfk

∂Sjf2

∂pjfk

. . .
∂Sjfk

∂pjfk


︸ ︷︷ ︸

=∆p




(1 − ϑrf1)pjf1
...

(1 − ϑrfk)pjfk


︸ ︷︷ ︸

=p̃j(ϑ)

−


κjf1

...

κjfk


︸ ︷︷ ︸

=κj


= 0, (13)

Note the definitions of S̃j , ∆p, p̃j , and κj below the equation above. Solving for κj yields

κj(ϑ) = p̃j(ϑ) + ∆−1
p S̃j(ϑ). (14)

Equation (14) provides the basis of the estimation of both the pricing friction parameter ϑ and

marginal costs themselves. I estimate ϑ by GMM under the assumption that restaurant marginal

costs κjf for platform orders are uncorrelated with exposure to commission caps. This assumption

holds when areas with systematically low or high restaurant costs are not more likely to adopt

commission caps and localities’ adoption of commission caps does not impact the physical costs

that restaurants incur in preparing meals. Formally, the population moment condition is

E[κ̃jf (ϑ0)Zj ] = 0, f ̸= 0 (15)

where κ̃jf (ϑ) = κjf − κ̄f (ϑ) is the de-meaned marginal cost of restaurant j for orders on platform

f , Zj is an indicator for a commission cap affecting restaurant j, and ϑ0 is the true value of ϑ.

The GMM estimator ϑ̂ sets the empirical analogue of (15) to zero; this empirical analogue averages

over both metros m and platforms f .

With an estimate of ϑ in hand, I estimate marginal costs under the assumption that κjf = κdirectz

for f = 0 and κjf = κplatformz for f ̸= 0, where κdirectz is a restaurant’s cost of preparing a meal for

a direct order and κplatformz is the cost of preparing a meal for a platform order. Marginal costs

for platform orders may differ from those for direct orders due to differences in the packaging and

logistical costs. The costs κjf that I recover from (14) generally differ across restaurants within a
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particular platform f due to sampling error. In light of these differences, I use the cross-restaurant

average of the κj0 costs recovered from (14) as my estimator of κdirectz . I similarly use the average

κjf recovered from (14) across platform/restaurant pairs as my estimator of κplatformz .

5.3 Estimation of restaurant platform adoption model

In this section, I outline the estimation of the model of platform adoption by restaurants. Appendix

B provides a full technical exposition of the estimator.

I estimate the parameters Kτm(G) and Σ = (σω, σrc) governing platform adoption using a two-

step generalized method of moments (GMM) estimator. Recall that restaurants adopt platforms

to maximize perceived profits given beliefs about rival choices that are consistent with actual

choice probabilities. The first step involves estimating conditional choice probabilities (CCPs) as

a function of variables affecting restaurant profits. The second step involves setting restaurant

beliefs to the estimated CCPs and then fitting model predictions to observed choices.19

In the first stage, I specify platform adoption CCPs as a multinomial logit whose parameters

I estimate by maximum likelihood. The covariates include: population within five miles of the

restaurant; the number of restaurants within five miles; municipality fixed effects; an indicator for

an active commission cap; and the shares of the population within five miles that are under 35

years old, married, both under 35 years old and married, and with household income under $40k.

I also include interactions of the demographic shares and the number of nearby restaurants. The

first-stage CCPs P̂m permit computation of each restaurant’s probability of joining platforms G for

under parameter values θadopt. As noted, I estimate θadopt using a GMM estimator that matches

model predictions to two sets of empirical patterns. First, the estimator ensures that the model’s

predicted share of restaurants joining each possible combination of platforms (e.g., no platforms,

only DoorDash, Grubhub and Postmates, etc.) in each metro area equals the analogous observed

share. I include moments ensuring that the model matches metro-level adoption probabilities in

order to estimate the mean fixed cost parameters Kτm(G).

The second set of moments are included to pin down Σ = (σω, σrc). These moments ensure that

the model-implied covariances of the log population under 35 years of age within five miles of

a restaurant—a shifter of platform adoption—with two measures of platform adoption are equal

to the same covariances as computed on the estimation sample. The measures employed are (i)

an indicator for whether restaurant j joins any platform and (ii) the number of platforms that

the restaurant joins. To understand why these moments are useful in estimating Σ, note that

increasing σω and σrc make restaurants less responsive to expected profits when choosing which

platforms to join. Given that a higher population of young people—who are especially likely to

enjoy platforms—boosts the profit gains from joining platforms, a larger covariance between Dj

and platform adoption suggests smaller values of σω and σrc. An alternative approach would be

to replace the profit shifter Dj with estimated profits. I choose to use demographics Dj rather

than estimated profits because the latter are more likely to suffer from measurement error due to

sampling error or misspecification error, which would introduce bias.

I aim to characterize a long-run equilibrium using a static model. In practice, however, platform

19Singleton (2019) uses a similar estimator to estimate a Seim (2006)-style positioning model.
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adoption decisions may be dynamic. If restaurants in the sample have not fully adjusted to a long-

run equilibrium, then I risk overstating fixed costs (if non-adoption reflects inertia or perceived

risk of platform exit) and understating responsiveness to profitability (if adoption depends more

on uncertain long-run returns than on current returns).

5.4 Estimation of platform marginal costs

I estimate platform marginal costs using first-order conditions for the optimality of consumer fees.

The first-order conditions for platform f ’s consumer fees {cfz}z to maximize the expected profits

Λfm as defined in (11) are, stacked in matrix notation,

∆f (cf −mcf ) + S̃f = 0, (16)

where ∆f is an Nz ×Nz matrix with the (z, z′) entry (∆f )zz′ = dEJm [sfz′ ]/dcfz and Sf is a vector

with component z equal to Sfz = EJm [sfz] +
∑

z′∈Z rfz′dEJm [ρ̄∗fz′sfz′ ]/dcfz. Recall that Nz is

the number of ZIPs in metro m. Furthermore, cf and mcf are Nz-vectors containing platform f ’s

ZIP-specific consumer fees and marginal costs. When ∆f is non-singular, platform f ’s marginal

costs are given by
mcf = cf + ∆−1

f Sf . (17)

I estimate mcf by substituting ∆f and Sf for estimates of these quantities obtained in (17).20

Platforms may maximize long-run profits rather than static profits. If platforms set fees below

those maximizing static profits based on the future benefits of contemporaneous fee reductions,

then I risk understating platforms’ marginal costs. With that said, the marginal costs that I

estimate in practice are in line with external information on platform costs (see Section 6.4).

Although the estimation approach relies on the assumption that platforms set their ZIP-specific

consumer fees to maximize their profits, I do not assume that platforms choose their commission

rates rm optimally. That platforms set rm optimally on a market-by-market basis is dubious given

that platforms in the sample period advertised constant national commission rates of 30%. In the

first part of the counterfactual analysis section, I remain agnostic on platform commission setting

and solve for profit-maximizing consumer fees holding a fixed commission rates at various levels; this

exercise simulates commission caps that restrict commission rates. In the counterfactual analysis,

I solve for profit-maximizing commissions, which equal 34% on average (see Table 6).

6 Estimation results

6.1 Parameter estimates for consumer choice model

Table 2 reports estimates of consumer choice model parameters. Several estimates are notewor-

thy. First, the estimated scale parameters σζ1 and σζ2 are sizeable, suggesting that consumers

20The procedure requires adjustment for Uber Eats (f) and Postmates (g), who maximize their joint profits
Λf + Λg. The first-order conditions for the consumer fees cfz, cgz are[

∆f ∆fg

∆gf ∆g

]
︸ ︷︷ ︸

=∆̄

(

[
cf
cg

]
︸︷︷︸
=c̄

−
[
mcf
mcg

]
︸ ︷︷ ︸
=m̄c

) +

[
Sf

Sg

]
︸ ︷︷ ︸
=S̄

= 0,

where ∆fg is an Nz × Nz matrix with (z, z′) entry dEJm [sgz′ ]/dcfz and S′
f is an Nz-vector with z component

Sfz = EJm [sfz] +
∑

z′(rfz′
dEJm [p̄∗

fz′sfz′ ]/dcfz + rgz′dEJm [p̄∗
gz′sgz′ ]/dcfz). Assuming non-singularity of ∆̄, the marginal

costs of platforms f and g are m̄c = c̄+ ∆̄−1S̄.
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are divided by both overall taste for online ordering and by tastes for specific platforms. Addi-

tionally, the estimated λ demographic effects on platform tastes imply that young and unmarried

consumers prefer delivery platforms relative to older and married consumers. The large estimate of

ση suggests limited substitutability between restaurant ordering and at-home dining. In addition,

the α parameter estimates indicate that married and higher income consumers are less price sen-

sitive. Last, platform sales respond to restaurant variety on platforms: the estimated elasticities

of platforms’ orders with respect to their restaurant listing counts range from 0.78 to 1.32 across

platforms in the New York metro.21

To evaluate the implications of estimates for ordering behaviour, I compute the shares of consumers

substituting to each platform and to making no purchase among those who substitute away from

a platform f upon a uniform increase in f ’s consumer fees. Across platforms in the New York

metro, between 16–24% of these no longer place any restaurant order and an additional 47–57%

switch to ordering directly from a restaurant whereas the remainder switch to a different platform.

Online Appendix Table O.28 details these results.22

Table 2: Consumer choice model parameter estimates

Parameter Estimate SE

α 0.24 0.03
αyoung -0.01 0.01
αmarried -0.02 0.01
αhigh inc -0.07 0.01
σζ1 1.27 0.09
σζ2 0.82 0.09
ρ 0.53 0.47
ϕchain 0.89 0.14
σϕ 0.87 0.48
ση 2.02 0.02

Parameter Estimate SE

λDD
young 0.60 0.18

λDD
married -0.37 0.20
λDD
high income -0.21 0.24

λUber
young 0.66 0.18

λUber
married -0.47 0.20
λUber
high income -0.24 0.20

λGH
young 0.34 0.20

λGH
married -0.24 0.21
λGH
high income -0.21 0.20

λPMyoung 0.51 0.26

λPMmarried -0.85 0.24
λPMhigh income -0.85 0.16

ληyoung -0.44 0.25
ληmarried 0.13 0.28
ληhigh income -1.61 0.14

Notes: this table reports estimates of the parameters of the consumer choice model. The panel on the right reports
estimates of parameters related to consumer demographics whereas the panel on the left reports estimates of the
other parameters. Estimates of the platform/metro fixed effects δfm and the metro fixed effects µη

m are omitted.

6.2 Estimates of restaurant marginal costs

The first step in estimating restaurant marginal costs involves estimating the ϑ parameter governing

the extent to which restaurants account for commissions in price setting. I obtain the estimate

ϑ̂ = 0.638 (95% confidence inteval = [0.631, 0.644]), which implies that restaurants account for

about 64% of platform commissions in pricing.23

21See Online Appendix Table O.27 for details on the computation of these elasticities.
22Online Appendix Table O.26 characterizes dispersion in restaurants’ total sales gains from joining platforms.

The gains vary significantly both within and across metro areas.
23I use the bootstrap procedure described in Appendix O.10 to compute this interval, which reflects sampling

uncertainty in the sample of restaurants and in the demand estimates but not in the restaurant price indices.
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Table 3 describes estimates of restaurant marginal costs κjf and of the markups implied by the κjf

estimates. Marginal costs are slightly lower for platform orders, which could reflect savings on in-

store waiting staff and cleaning. Restaurant markups for direct orders are about 30% their costs.

Further, markups on platform orders are larger under commission caps. Markups do not vary

much between direct orders placed from restaurants subject and not subject to commission caps.

Additionally, restaurants belonging to the same platform have heterogeneous gross, pre-commission

markups on account of heterogeneity in costs and demand conditions; Online Appendix Figure O.19

shows that, within each of the leading three platforms, gross markups range from about $9.50 to

$10.35 between the 5th and 95th percentile. Heterogeneity in gross markups makes Spence and

displacement distortions of consumer fees relevant.

Table 3: Restaurant marginal costs and markups (means and standard deviations, $)

(a) Marginal costs

Channel No cap Cap

Direct 16.09±0.34 16.26±0.23
Platform 15.33±0.28 15.51±0.38

(b) Markups

Channel No cap Cap

Direct 5.66±0.34 5.56±0.23
Platform 5.00±0.27 5.18±0.23

Notes: the table describes marginal costs κjf and markups (1− rf )pjf −κjf across ZIPs separately for direct orders
(r0 = 0) and platform-intermediated orders, and also separately for ZIPs with commission caps and those without
caps. The averages are taken over restaurants.

6.3 Estimates of the restaurant platform adoption model

Table 4 reports estimates of the parameters governing platform adoption by restaurants. In in-

terpreting the estimates, note that the average expected revenues of a restaurant that joins all

platforms are about $31,000. The fixed costs are at a monthly level. Panel 4b contains the esti-

mated average costs of platform adoption by platform subset across markets and restaurant types

whereas Panel 4c displays average costs by the number of platforms. In both cases, the averages

are weighted by restaurant counts. These panels shows that joining a single platform entails a

substantial fixed cost, ranging from $574 tor DoorDash to $954 for Grubhub, on average. How-

ever, joining additional platforms does not systematically raise the platform’s fixed adoption costs.

Although I estimate that joining two or three platforms is more costly on average than joining one,

the differences in the estimates are imprecise. The fact that subsets with three and four platforms

are estimated as slightly less costly than those with two platforms likely reflects sampling error.

The estimated scale parameter σrc of platform-specific normal choice disturbances is $327 whereas

the estimated scale parameter σω of the platform-subset-specific disturbance is $287.

6.4 Estimates of platform marginal costs

Table 5 describes the estimated cross-ZIP distribution of platform marginal costs—which reflect

courier compensation—and platform markups. As of September 2022, DoorDash’s website stated

that “Base pay from DoorDash to Dashers ranges from $2–$10+ per delivery depending on the esti-

mated duration, distance, and desirability of the order” (DoorDash calls its couriers “Dashers”).24

This level of pay lines up well with the estimated interquartile range of DoorDash’s marginal costs

of $8.56 to $10.52. Additionally, McKinsey & Company found platform marginal costs of $8.20

24See https://help.doordash.com/consumers/s/article/How-do-Dasher-earnings-work.
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Table 4: Estimates of restaurant platform adoption parameters

(a) Parameters governing choice disturbance

Parameter Estimate SE

σω 287 (70)

σrc 327 (26)

(b) Mean fixed costs by restaurant type ($)

Platform subset Estimate SE

DD 574 (124)

Uber 618 (156)

GH 954 (214)

PM 685 (142)

DD, Uber 967 (195)

DD, GH 968 (222)

DD, PM 820 (171)

Uber, GH 979 (210)

Uber, PM 1202 (272)

GH, PM 1146 (270)

DD, Uber, GH 991 (233)

DD, Uber, PM 1403 (293)

DD, GH, PM 1275 (264)

Uber, GH, PM 1223 (283)

All 675 (154)

(c) Average cost by platform subset size

Number of platforms joined
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Notes: Panel 4a reports estimates of the parameters governing the disturbance affecting restaurants’ platform adop-
tion decisions. Panel 4b reports estimates of the mean Kτm(G) fixed costs across markets m for each platform subset
G and restaurant type τ . Panel 4c reports the mean Kτm(G) across markets m and platform subsets G with a given
number of constituent platforms for each restaurant type. I compute the standard errors appearing in parentheses
using the bootstrap procedure described in Appendix O.10.

per order in a 2021 analysis of US food delivery (Ahuja et al. 2021); this figure is close to my mean

marginal cost estimates for the leading three platforms.

Table 5: Estimates of platforms’ marginal costs ($)

Marginal costs Markup
Quantiles Quantiles

Mean 0.25 0.50 0.75 Mean 0.25 0.50 0.75

DD 9.38 8.56 9.80 10.52 3.70 3.37 3.71 4.04
Uber 9.31 8.13 9.11 10.39 3.57 3.19 3.56 3.93
GH 9.56 8.00 10.03 10.74 3.34 2.94 3.32 3.71
PM 14.57 12.12 13.83 15.49 3.10 3.14 3.56 4.02

Notes: this table describes the estimated distribution of platforms’ marginal costs across ZIPs.

7 Counterfactual analysis

This section proceeds in three parts. First, I compare privately optimal fees—i.e., those chosen

by profit-maximizing platforms in equilibrium—to the socially optimal fees that maximize total

welfare. This analysis quantifies overall distortions in platform fees and identifies their underlying

sources. I next assess the potential for commission regulation of the sort enacted by local gov-

ernments to correct these distortions. Last, I examine whether platform competition mitigates

inefficiencies in fee setting. A caveat of the analysis is that it isolates the pricing margin: I ab-

stract from other possible platform responses to regulation or competition, such as exit, changes
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in quality, or advertising adjustments.

To implement the counterfactuals, I divide metro areas into counties and compute equilibrium out-

comes at the county level. This granular approach increases cross-market variation and facilitates

the analysis of how regional characteristics shape fee distortions: although the data include only

14 metro areas, they contain 104 counties. Throughout, I index counties by m.

7.1 Comparison of privately and socially optimal platform fees

I begin the counterfactual analysis by solving for the privately and socially optimal consumer

fees and merchant commission rates, allowing both sorts of fees to vary flexibly across platforms

and counties. Table 6 reports the cross-county mean and, in parentheses, standard deviations of

privately and socially optimal fees.

Table 6: Socially and privately optimal platform fees

Consumer fee ($) Restaurant commission (%)

Platform
Privately Socially Difference Privately Socially Difference
optimal optimal optimal optimal

DD 4.36 (1.52) 3.29 (1.81) 1.07 (1.30) 31.01 (4.11) 15.42 (8.54) 15.58 (8.24)

Uber 2.63 (1.37) 2.79 (1.72) -0.16 (1.69) 37.02 (6.12) 19.93 (6.83) 17.10 (5.61)

GH 2.11 (1.91) 3.14 (1.89) -1.03 (2.09) 39.28 (6.59) 20.11 (7.22) 19.17 (7.19)

PM 5.51 (1.51) 6.29 (2.29) -0.78 (2.24) 36.96 (5.33) 18.01 (9.80) 18.96 (8.32)

Total 3.59 (1.55) 3.30 (1.83) 0.29 (1.62) 34.32 (5.24) 17.56 (7.98) 16.77 (7.45)

Notes: this table displays the mean platform consumer fees and restaurant commissions across counties. Each county
is weighted by its sales on the indicated platform under the privately optimal fees. The “Total” row averages across
platforms, using platforms’ total sales under the privately optimal fees as weights. Standard deviations of each
reported quantity (weighted by sales) appear in parentheses.

The results show a stark asymmetry: privately optimal consumer fees are close to socially optimal

whereas restaurant commissions are about twice their efficient levels.25 The “Consumer fee ($)”

panel of Table 6 shows that the sales-weighted mean difference between privately and socially

optimal consumer fees is only $0.29, with all platforms except DoorDash setting consumer fees below

their welfare-maximizing levels. This contrasts sharply with the result for restaurant commissions:

the mean privately optimal commission rate of 34.3% is almost twice the mean socially optimal

rate of 17.6%. These patterns are consistent across platforms.26

This divergence reflects interdependent dynamics on both sides of the market. First, consumer fees

are close to optimal because market power and business stealing distortions off each other. I sepa-

rately quantify consumer fee distortions using a generalized version of the distortion decomposition

formula (2) derived in Section 2. To apply this formula in a setting with platform competition, I

evaluate distortions for each platform f individually, holding fixed the fees of its rivals.

Two additional distortions arise in the presence of platform competition. First, an increase in

25Total fee levels under profit-maximization are also inefficiently high: the average platform markup (the ratio
of platform variable profits to sales) is $3.77 under privately optimal fees, but -$1.50 under socially optimal fees.
Negative markups reflect that network externalities make platform subsidization welfare enhancing. Online Appendix
Table O.29 provides additional markup results.

26In Online Appendix O.14, I investigate sources of cross-county variation in gaps between privately and socially
optimal fees by regressing these gaps on potential drivers of this variation as suggested by the illustrative model of
Section 2. These drivers reflect platform market power, offline business stealing, and cross-side externalities.
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platform f ’s consumer fee shifts ordering to rival platforms, thus boosting restaurant sales on

these rival platforms. A social planner internalizes this benefit to restaurants whereas a profit-

maximizing platform does not. This generates an online business stealing distortion akin to the

offline business stealing distortion. Second, a social planner accounts for the effects of platform f ’s

consumer fees on the profits of all rival platforms g ̸= f , whereas a platform f that maximizes its

own profits does not. This discrepancy gives rise to a rival profits. Online Appendix O.1 derives

these additional distortions and generalizes the other distortions from the illustrative model.

Despite the additional complexity of the structural model, the generalized distortion decomposition

formula closely approximates the total distortion in consumer fees computed by numerically solving

for privately and socially optimal fees. The total distortion predicted by summing together the six

distortions appearing in the generalized decomposition formula—the market power, offline business

stealing, online business stealing, Spence, displacement, and rival profits distortions—correlate at

0.97 with the numerically solved total distortions. Below, I refer to the difference between the total

distortion found from solving the model and that predicted by the distortion decomposition formula

as “Other,” a residual term capturing the extent to which the decomposition is an approximation

rather than an exact identity.

Table 7 reports the average contribution of each distortion to the total distortion in consumer fees

by platform. For DoorDash, market power raises consumer fees by $4.35, but this is largely offset by

the sum of a $1.93 offline business stealing distortion and a $0.95 online business stealing distortion.

Displacement more than offsets the Spence distortion, producing only a small net effect from

network externalities. The additional rival profits distortion and the unexplained “Other” part of

the total distortion are small in magnitude compared to the distortions relating to business stealing

and network externalities. As a result, DoorDash’s consumer fees exceed the social optimum by

only a modest amount. On smaller platforms, market power is weaker while business stealing is

stronger, leading to negative net distortions and implying that their consumer fees are inefficiently

low on average.27

Table 7: Consumer fee distortions ($)

Distortion
Platform

DD Uber GH PM

Market power 4.35 3.81 3.56 3.04
Offline business stealing -1.93 -1.59 -1.58 -1.39
Online business stealing -0.95 -1.50 -1.57 -1.76
Spence 2.89 2.72 2.75 2.19
Displacement -4.19 -4.81 -5.53 -4.32
Rival profits 0.33 0.64 0.64 0.80
Other 0.58 0.58 0.71 0.65

Total 1.07 -0.16 -1.03 -0.78

Notes: “DD” indicates DoorDash; “Uber” indicates Uber Eats;
“GH” indicates Grubhub; and “PM” indicates Postmates.

Table 8: Variety and fixed cost effects of
commission reductions

Effect
Amount ($/order)
Mean St. dev.

Variety 0.20 (0.041)

Fixed cost 0.11 (0.040)

Net 0.09 (0.040)

Although the illustrative model does not yield a neat decomposition of commission distortions,

27Online Appendix Table O.1 characterizes the power of each distortion in explaining variation in total distortions
across counties and platforms. Conditional on all other distortions, the Spence and displacement distortions best
explain this variation.
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the welfare effects of imposing socially optimal fees clarify why commissions are too high: profit-

maximizing platforms fail to internalize consumer gains from expanded restaurant uptake. Table 9a

reports that shifting from privately to socially optimal fees yields the total welfare gain of $3.14 that

is driven primarily by consumer gains of $10.55/order. These gains arise because lower commissions

induce a 12.5% reduction in restaurant prices on platforms and substantially restaurant adoption

of platforms: as shown in Table 9b, the share of restaurants active on at least one platform rises

by 50.7%, and the total number of restaurant listings on platforms increases by 82.0%.

Reductions in commissions raise consumer welfare by encouraging restaurant platform adoption and

reducing restaurant prices. However, these responses attenuate restaurants’ direct gains from lower

commissions. Table 10 decomposes the change in restaurant profits from moving from privately

to socially optimal fees, expressed per platform order under the privately optimal fees. The direct

effect of the fee change on restaurant profits, holding platform adoption and prices fixed, is $4.26

gain per order. Accounting for restaurant adoption responses, which entail fixed adoption costs

and prompt offline business stealing, reduces the benefit to $3.59. Similarly, accounting for price

responses while holding adoption fixed reduces the benefit to $2.47. When both adoption and price

responses are taken into account, the total profit gain to restaurants falls to just $0.74 per order,

only 17% of the direct benefit. This highlights that most of the gains from lower commissions are

competed away, leaving restaurants only modestly better off.28

An interaction of the business stealing, Spence, and displacement distortions explain why privately

optimal restaurant commissions are inefficiently high. The Spence distortion pushes restaurant

commissions above their socially optimal levels when inframarginal consumers benefit more from

increased restaurant uptake of platforms than do marginal ones. However, this distortion is offset

by a displacement distortion if marginal consumers under privately optimal fees place greater value

on seller variety than do marginal consumers under socially optimal fees. This argument applies

when privately optimal consumer fees are inefficiently high due to market power, shifting variety-

loving consumers who are inframarginal under socially optimal fees into marginal status. Under the

estimated model, however, the displacement distortion plays little role in determining restaurant

commissions because privately and socially optimal consumer fees do not systematically diverge. As

shown by Table 7, this is due to the offline business stealing distortion counteracts market power —

the primary reason to expect inefficiently high consumer fees and hence a displacement distortion.

As a result, the Spence distortion remains unopposed, leading to restaurant commissions that

significantly exceed socially optimal levels.

The fact that the privately optimal commissions far exceed socially optimal levels in turn explains

why externalities relating to network externalities do not make consumer fees inefficiently high.

Because privately optimal commissions are high, platforms earn substantial restaurant-side revenue

from attracting consumers to platforms. This encourages platforms to set low consumer fees, a

force that is reflected in the large mean displacement distortions of Table 7.

28The findings presented in Online Appendix Figure O.20 corroborate this argument. This figure provides the
welfare effects of lowering DoorDash’s restaurant commission rate from its privately optimal rate by one percentage
point in each county. A marginal commission reduction reduces restaurant profits due to competitive responses
(increased platform uptake and price reductions), and raises consumer welfare, in large part due to benefits from
increased restaurant variety on platforms. The net effect is positive.
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Table 9: Effects of transition from privately to socially optimal fees

(a) Welfare

Quantity Change ($/order)

Consumer welfare 10.55
Restaurant profits 0.74
Platform profits -8.14
Total welfare 3.14

(b) Restaurant and consumer responses

Quantity Change (%)

Restaurant prices -12.5
Share of restaurants online 50.7
Number of restaurant listings 82.0

First-party orders -18.5
Platform orders 178.8
Total orders 12.9

Table 10: Decomposition of restaurant profit effects

Responses Profit change ($/order)

Direct effect of fee changes 4.26
With adoption responses 3.59
With price responses 2.47
Total effect (all responses) 0.74

7.2 Commission regulation

Having established that socially optimal platform fees feature consumer fees similar to those

charged by profit-maximizing platforms but substantially lower restaurant commissions, I now

assess the potential for commission regulation to move the market closer to this optimum. Specif-

ically, I compute equilibrium outcomes under scenarios in which all platforms’ commissions are

constrained to various levels r̄ while consumer fees remain unconstrained. Throughout, I treat the

equilibria under a regulated 30% commission rate as the baseline given that platforms charged this

rate in practice in the absence of commission caps.

Figure 4 plots the welfare effects of regulating commission at levels between 15% and 40%, aggre-

gating across markets. The components of welfare included are restaurant profits, platform profits,

consumer welfare, and total welfare defined as the sum of these three components.

Although commission caps of 15%—the most common level in practice—lower total welfare, re-

stricting commissions to levels between 20% and 30% is welfare enhancing.29 Commission reduc-

tions in this range raise restaurant profits while having mixed effects on consumer welfare, reflecting

the offsetting effects of commission reductions in expanding restaurant variety and raising consumer

fees. For small commission reductions, platform ordering and consumer welfare increase because

the effects of expanded variety dominate those of higher fees, although this relationship flips for

larger commission reductions. Despite the negative impacts of commission reductions on platform

profits, the mixed and relatively small effects on consumer welfare and unambiguous positive ef-

fects on restaurant profits together imply that moderate commission reductions to levels above 20%

boost total welfare. The maximum welfare increase achievable by one-sided commission regulation,

though is small at $0.10 (at a 26% commissions).

Whereas the socially optimal fee structure involves restaurant commissions roughly half as large

29Commission caps of 15% may be attractive to policymakers despite reducing total welfare on the grounds that
they increase local welfare defined as the sum of consumer surplus and restaurant profits.
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as those chosen by profit-maximizing platforms, halving commissions from 30% to 15% reduces

total welfare. This contrast arises because a 15% cap induces higher consumer fees, which reduces

platform usage and contracts the pool of consumers who benefit from expanded restaurant variety.

To illustrate this mechanism, I compare the consumer value of increased restaurant uptake under

the consumer fees and prices prevailing at 30% versus 15% commissions. Specifically, I compute

consumer welfare as restaurant adoption rises with lower commissions, holding consumer fees and

prices fixed at values under 30% commissions. I also compute the total fixed costs incurred by

restaurants when adopting platforms under each commission level, allowing for a direct comparison

of the benefits and costs of expanded restaurant uptake of platforms.

Figure 3 presents the results, aggregated across counties and scaled by platform orders under 30%

commissions. The solid curve shows the variety benefits under baseline fees and prices, while

the dotted grey curve shows variety benefits under the higher consumer fees arising under 15%

commissions. The dashed red line plots fixed adoption cost increases. Under the baseline fees,

variety benefits far exceed adoption costs. But the fact that the dotted grey curve lies only

marginally above the red curve indicates that, under higher consumer fees, the costs of increased

restaurant adoption of platforms almost entirely offset the variety benefits, limiting the social value

of restaurant platform adoption. Besides reducing consumer welfare by limiting variety benefits,

the consumer increases from commission caps directly reduce consumer welfare, contributing to a

negative overall impact of 15% commission caps on total welfare.

Figure 3: Effects of commission reduction on variety benefits and fixed adoption costs
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This figure displays welfare effects of reducing platform commission rates from a 30% baseline to levels between 15%
and 30%, aggregated across counties and scaled by the number of baseline platform orders. The “Variety benefits”
curves show consumer welfare gains from increased restaurant adoption of platforms due to lower commissions,
holding consumer fees and restaurant prices fixed at either their 30% commission levels (baseline consumer fees) or
their levels under 15% commission equilibria (high consumer fees). The Fixed costs curve shows the additional fixed
costs incurred by restaurants associated with greater platform adoption as commissions fall.

In Section 7.1, I showed that competitive responses largely offset restaurant gains from imposing the

socially optimal fees. Restaurants similarly compete away most of their benefits from commission

caps. Figure 6a shows that, for a 15% cap, the direct benefit of reduced commission payments to

restaurants is $3.73 per order. This falls to $2.11, though, after accounting for higher consumer fees

(and thus fewer orders), $1.60 with increased restaurant adoption (which entails fixed adoption

costs and offline business stealing), and just $0.80 after restaurants lower prices. Competitive

responses also mitigate consumer losses from commission caps. As shown in Figure 6b, fee increases
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reduce consumer welfare by $2.68 per order, but this is offset to $2.17 by greater restaurant adoption

and to $0.56 after additionally accounting for restaurant price reductions.

Figure 4: Welfare by regulated commission level
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Notes: this figure plots welfare effects of constraining commissions for all platforms at levels between 15% and 40%
as a share of the number of platform orders in the 30% commission equilibrium.

Figure 5: Fees, adoption, and ordering by regulated commission level
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(c) Share of orders placed on a
platform
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Notes: this plot shows averages of the following variables across counties for various regulated commission levels:
consumer fee ($, mean across platforms weighted by sales), share of restaurants that have adopted at least one
platform, and the share of orders placed on a food delivery platform.

Heterogeneity in optimal commission regulation. Table 11, which reports the 10th, 25th, 50th, 75th,

and 90th quantiles of regulated commission levels maximizing total welfare and platform profits,

reveals cross-county heterogeneity in these optimal rates. The interquartile range of the socially

optimal commission caps is 24–28% whereas the corresponding range for platform-optimal commis-

sions is 31–35%. To investigate the determinants of the socially optimal regulated commission rate,

I regress this rate rsom on three county-level characteristics. The chosen characteristics reflect the

drivers of socially optimal commissions as suggested by the illustrative model of Section 2.

The first characteristic is a measure of offline business stealing, defined as the ratio of the increase

in direct sales to the loss in platform sales when platforms become unavailable. The average value
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Figure 6: Decomposing welfare effects of 15% commission caps

(a) Restaurant profits

... plus restaurant price response
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(b) Consumer welfare
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Notes: Panel (a) reports effects of reducing restaurant commissions from 30% to 15% on restaurant profits.
The“Commission reduction only” bar provides the direct effect of lower commissions, holding all other factors fixed
at their levels under 30% commissions. Each subsequent bar shows the effect after accounting for an additional
equilibrium response (in consumer fees, in restaurant platform adoption, and in prices). Panel (b) shows the corre-
sponding effects on consumer welfare. The “Consumer fee increase only” bar provides the effect of higher consumer
fees, holding the other factors fixed at their levels under 30% commissions. The subsequent bars show the effect
after accounting for additional equilibrium responses. All effects are measured in dollars per platform order in the
30% commission baseline.

indicates that 60% of platform orders would become direct orders if platforms were abolished.

When offline business stealing is high, platform and direct ordering are especially substitutable.

This means that the consumer fee increases associated with commission reductions are particularly

effective in boosting direct ordering, benefitting restaurants. Thus, I expect a negative relationship

between offline business stealing and the socially optimal commission rate.

The additional drivers of rsom that I consider are changes in platform adoption costs and variety

benefits when the regulated commission falls by one percentage point from a 30% baseline. Com-

mission reductions lead restaurants to join more platforms. I compute the per-capita additional

fixed platform adoption costs incurred by restaurants due to the one percentage point commission

reduction in each county, calling it the fixed cost change. Variation in this variable owes to both

variation in the efficacy of commission reductions in attracting new restaurants to join platforms

and cross-county variation in the magnitude of fixed costs. I also compute per-capita increase in

consumer welfare attributable to increases in restaurant platform adoption prompted by the com-

mission reduction, holding fixed consumer fees and prices at their levels under 30% commissions.

This yields the variety change variable. I expect that counties in which commission reductions

especially raise adoption costs to have higher socially optimal commissions, which deter costly plat-

form adoption, and counties in which commission reductions yield especially large variety benefits

to consumers to have lower socially optimal commissions.

Table 12 provides results. The estimated coefficient of each of the regressors enumerated above

has the hypothesized sign and is statistically significant at 95% level. Furthermore, these three

variables alone explain 54% of the cross-county variation in rsom. In addition to the estimated

coefficients, the table contains the following for each regressor k: the R2 from a regression of rsom
on only regressor k (R2

k) and (ii) the R2 from a regression of rsom on all regressors except k (R2
−k).

High values of the former and low values of the latter indicate high explanatory power. All three

regressors provide explanatory power, with the bivariate R2
k measures ranging from 0.23 for the

fixed cost change to 0.40 for the variety change. By both measures, the variety change variable

yields the greatest power in explaining cross-county variation in optimal commissions.
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These results raise the question of which underlying market features shape the extent of offline

business stealing and variety benefits from commission reductions, the two main predictors of

optimal commission levels. To explore this, I regress the variety and offline business stealing

measures on (i) the log of the average number of restaurants within five miles of a consumer

and (ii) the log of population within the same radius. I hypothesize that areas with a higher

density of restaurants tend to experience larger variety gains and higher offline business stealing.

Variety effects are likely stronger in areas with more local restaurants and hence more potential

for expansions in variety. Additionally, I expect offline business stealing to be greater in areas with

with high restaurant densities, where baseline restaurant ordering is likely high and thus the scope

for platforms to expand restaurant sales is limited.

The results support these hypotheses: restaurant density positively relates to both variety gains

and offline business stealing, explaining 51% and 30% of the variation in these variables, respec-

tively. Given the positive relationship between restaurant density and factors associated with lower

optimal commissions, denser areas have lower socially optimal commissions. A 10% increase in

log restaurant density predicts a 2.5 percentage point drop in the optimal commission rate rsom.

Reflecting that restaurant and population density are highly correlated, the same pattern holds

for population density.

Table 11: Heterogeneity in optimal regulated commission rates (%)

Quantity
Percentile

10th 25th 50th 75th 90th

Platform-profit maximizing 28 31 32 35 40
Total-welfare maximizing 23 24 26 28 37
Difference 2 5 7 8 9

Notes: this table describes the cross-county distribution of the regulated commission rates maximizing platform
profits and total welfare, and of the gap between these rates. The quantiles reported are weighted by county
population. The results are based on N = 104 counties.

Table 12: Drivers of the socially optimal regulated commission rate

Outcome: rsom
Regressor (k) Coefficient SE R2

k (only k) R2
−k (all but k)

Offline business stealing -0.32 (0.08) 0.34 0.46
Fixed cost change 0.96 (0.32) 0.23 0.50
Variety change -1.00 (0.19) 0.40 0.42
R2 0.54

Notes: see the main text for a description of the regression and the definitions of the regressors. “SE” provides
classical asymptotic standard errors. “Bivariate R2” is the R2 from a bivariate regression of rsom on the indicated
regressor. The sample includes N = 104 counties.

Two-sided regulation. Commission caps affect how fees are split between restaurants and con-

sumers without limiting the combined amount that platforms charge these two sides. The welfare

gains from adjusting this split are modest: commission caps can achieve welfare gains of $0.10 per

order at best. In contrast, shifting from privately to socially optimal fee levels yields a welfare

gain of $3.14 per order. The fact that socially optimal consumer fees are close to those that are

privately optimal whereas the socially optimal restaurant commissions are much lower suggests
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Table 13: Population density and optimal commission regulation

Regressor
Outcome

Offline business stealing Variety change rsom

log(# restaurants < 5 miles) 0.031 0.037 -0.025
(0.005) (0.004) (0.005)

log(population within 5 miles) 0.032 0.041 -0.029
(0.005) (0.004) (0.005)

R2 0.30 0.27 0.51 0.49 0.21 0.23

Notes: see the main text for a description of the regression and the definitions of the regressors. Classical asymptotic
standard errors appear in parentheses. The sample includes N = 104 counties.

Figure 7: Welfare under two-sided fee regulation
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Notes: this figure displays welfare effects of fixing all platforms’ commission rates at various levels ranging from
15% to 40% when platforms’ consumer fees are fixed at their levels under 30% commission rates. The plot shows
welfare results that are aggregated across all counties in the sample and scaled by the number of platform orders
in the baseline 30% commissions equilibrium. The dotted black line labelled “Break-even” indicates the regulated
commission rate at which platforms earn zero variable profit.

Figure 8: Fees, adoption, and ordering by regulated commission level (fixed consumer fees)
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Notes: this plot shows averages of the following variables across counties for various regulated commission levels:
consumer fee ($, mean across platforms weighted by sales), share of restaurants that have adopted at least one
platform, and the share of orders placed on a food delivery platform.
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that a more efficient regulation may pair commission reductions with consumer fee freezes.

To evaluate such two-sided fee regulation, I replicate the analysis underlying Figure 4 but holding

consumer fees fixed at their levels under 30% commissions. The results, shown in Figure 7, differ

markedly from from those for one-sided commission caps. First, the total welfare gains are larger.

At a regulated commission level of 18%—the level at which platform profits fall to zero—total

welfare rises by $2.30 per baseline platform order relative to the 30% commission benchmark. One

reason for this stark difference is that two-sided regulation directly limits the overall fee level,

mitigating distortions from platform market power. Also, as argued in the discussion of Figure 3,

fixing consumer fees amplifies consumer gains from expanded restaurant variety.

The distributional impacts of one- and two-sided fee regulations also differ. Most of the welfare

gains from two-sided regulation accrue to consumers, whereas restaurants often experience profit

losses from such regulation. In contrast, one-sided commission caps primarily benefit restaurants

and tend to have smaller—and often negative—effects on consumer welfare. Consumers do better

under two-sided regulation because, as shown by Figure 8, it induces restaurant uptake of platforms

and restaurant price reductions without boosting fees. Restaurants do not necessarily gain from

two-sided fee regulation because it reduces commission-free direct sales, prompts costly increases

in platform adoption, and induces price reductions.

7.3 Competition and fee optimality

In one-sided markets, competition typically reduces pricing distortions from market power. In

two-sided markets, however, greater competition does not necessarily reduce distortions in how

fees are split between consumers and merchants. Teh et al. (2023) show that the effect of entry

depends on which side of the market experiences stronger competitive pressure, reflecting the see-

saw effect generally present in two-sided markets: lower fees on one side raise fees on the other.

If entry especially intensifies competition for merchants, merchant fees fall but consumer fees may

rise or remain high. If competition primarily strengthens on the consumer side, the opposite

may occur. Teh et al. (2023) show that, when consumer single-homing is high, entry amplifies

competition on the consumer side and lowers consumer fees while raising merchant fees. Wang

(2023) offers empirical support for this insight. This result resembles that of Armstrong (2006),

who demonstrates in a stark model of merchant multi-homing and consumer single-homing that

competition reduces consumer prices but does not affect merchant prices. Here, I complement these

findings by demonstrating how restaurant multi-homing shapes the fee effects of competition.

I study the effects of competition by simulating a scenario in which the leading four platforms set

fees to maximize their joint profits. This scenario corresponds, e.g., to a merger of DoorDash, Uber

(which already owns Uber Eats and Postmates), and Grubhub. Comparing outcomes under the

current competitive environment to those under counterfactual joint profit maximization highlights

the effects of pricing competition among platforms.30

Table 14a reports average fees that maximize social welfare, that arise in the competitive status quo

30Online Appendix Table O.30 reports results from a simulation in which DoorDash operates as a monopolist.
The findings align with those under joint profit maximization: monopolizing the market raises consumer fees and
reduces commissions. I prefer the joint profit counterfactual as welfare comparisons between the baseline and less
competitive regime reflect only the effects of fee changes, not changes in consumer choice sets.
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among profit-maximizing platforms, and those that maximize joint platform profits. Compared to

the competitive baseline, joint profit maximization raises consumer fees and slightly lowers restau-

rant commissions. Although this shift moves the fee split closer to the social optimum, it raises the

overall level of platform fees. The “Platform markup ($)” row shows that average platform profit

per order rises from $3.77 under competition to $4.45 under joint profit maximization. This higher

markup outweighs the more efficient allocation of fees in determining welfare: as Table 14b shows,

eliminating competition reduces total welfare by $0.31 per order in the competitive equilibria.

This loss is driven by consumer surplus, which falls by $0.64 per order. Restaurants, by contrast,

benefit from easing platform competition: due to commission reductions, their their profits rise by

$0.21/order.

One explanation for why commissions fall under joint profit maximization relates to restaurant

multi-homing and diminishing fixed costs of platform adoption. As shown in Table 4, restaurants

face substantial fixed costs when joining their first platform but much lower incremental costs

when adding a second or third. For example, the average cost of joining DoorDash is $574 for a

restaurant not on any platform, compared to just $349 for one already using Uber Eats.

These cost complementarities generate cross-platform spillovers: when one platform lowers its

commission and attracts more restaurants, those restaurants face lower incremental costs of joining

rival platforms. This makes it easier for rivals to recruit restaurants. Competing platforms do not

internalize these spillovers, as each sets fees to maximize its own profits. A single firm controlling

all platforms, by contrast, faces an incentive to reduce commissions at each platform in order to

promote adoption of other platforms held in common ownership. This dynamic could lead joint

profit maximization to lower commissions.

I assess this explanation by computing equilibrium fees in a scenario without cost complemen-

tarities. If complementarities explain why commissions fall under joint profit maximization, then

removing them should reverse the result that eliminating competition lowers commissions. To

eliminate cost complementarities, I replace the fixed costs of multi-homing on a platform set G
with the sum of the fixed costs of single-homing on each platform in G. Formally, I replace the

fixed costs Kτm(G) with new costs K ′
τm(G) defined by

K ′
τm(G) =

∑
f∈G

Kτm({f}), (18)

for all restaurant types τ and metros m. For example, I set the fixed cost of adopting both

DoorDash and Uber Eats equal to the sum of the costs of joining each individually.

The “No cost complementarity” panel of Table 15 shows that, under joint profit maximization,

both consumer fees and restaurant commissions rise absent complementarities. This result estab-

lishes that cost complementarities are pivotal in explaining why eliminating competition lowers

commission rates. Results from a second counterfactual without restaurant multihoming provide

supporting evidence of the role played by cost complementarities in shaping the fee effects of

competition. The “No multi-homing” panel, which reports average fees when restaurants are re-

stricted to a single platform, shows that moving from competition to joint profit maximization

raises commissions.
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Table 14: Effects of joint profit maximization

(a) Fee effects

Quantity
Socially Privately optimal
optimal Competition Joint max.

Consumer fees ($) 3.30 3.59 4.38
Restaurant commissions (%) 17.6 34.3 33.8
Platform markup ($) -1.42 3.77 4.45

(b) Welfare effects of moving from competition to joint profit maximization

Welfare component Effect ($/order)

Consumer welfare -0.64
Restaurant profits 0.21
Platform profits 0.11
Total welfare -0.31

Notes: Panel (a) reports sales-weighted average fees of three sorts: (i) those that maximize total welfare (“Socially
optimal”), (ii) those arising in competitive equilibria among profit-maximizing platforms (“Competition”), and (iii)
those that maximize joint platform profits (“Joint max.”). Averages are computed across platform/county pairs
using sales from the “Competition” regime as weights . The sales used in the weighted average are sales under fees
charged by competing platforms maximizing their own profits. Platform markups are defined as the ratio of platform
profits to sales.

Panel (b) reports effects of transitioning from the equilibrium platform fees arising in the status quo of platform
competition to the fees that maximize joint platform profits. These effects are in aggregate across counties and scaled
by the number of platform orders placed in the “Competition” regime.

Table 15: Profit-maximizing platform fees under alternative multi-homing assumptions

Quantity
No cost complementarity No multi-homing
Competition Joint max. Competition Joint max.

Consumer fees ($) 5.48 5.56 5.23 5.58
Restaurant commissions (%) 25.5 27.7 25.4 27.4

Notes: This table reports sales-weighted average platform fees under two conditions: (i) competition among profit-
maximizing platforms (“Competition”), and (ii) joint profit maximization across platforms (“Joint max.”). Results
are shown for two alternative structural assumptions governing restaurant multi-homing. Under the “No cost com-
plementarity” assumption, the fixed cost of multi-homing equals the sum of the fixed costs of single-homing on each
joined platform — i.e., platform adoption costs follow the form specified in equation (18). Under the “No multi-
homing assumption,” restaurants are restricted to joining a single platform. Under each set of assumptions, the sales
weights used in computing averages are those from the “Competition” regime.

8 Conclusion

This article developed and estimated a model of platform competition with the goal of assessing

the efficiency of platform fees. I found that US food delivery platforms’ consumer fees are approx-

imately optimal. Although market power raises these fees above efficient levels, this distortion is

largely offset by the failure of platforms to internalize the social benefit of raising direct ordering

via consumer fee increases. Restaurant commissions, by contrast, are about twice as high as is op-

timal because platforms do not fully account for consumer benefits generated by restaurant variety.

Restaurants, though, largely compete away their benefits from commission reductions.

Although restaurant commissions are about twice as high as their efficient levels, regulations that

halve commissions are welfare reducing. These regulations prompt consumer fee increases that

reduce the pool of consumers available to benefit from expanded restaurant variety on platforms.
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A two-sided fee regulation that caps consumer fees while reducing restaurant commissions would

be a more effective way of bringing platform fees closer to their efficient levels.

The results suggest subtlety in whether competition remedies fee inefficiencies. Eliminating plat-

form competition slightly reduces restaurant commissions, shifting the ratio of consumer to mer-

chant fees closer to its efficient level and boosting restaurant profits. This occurs because joint-

profit-maximizing platforms internalize the cross-platform spillovers from commission reductions,

which arise due to cost complementarities in restaurant multi-homing. However, eliminating com-

petition raises the overall level of platform fees and consequently reduces total welfare. Thus,

although platform competition harms merchants and exacerbates the bias of platform fees against

them, it improves efficiency by curbing market power.
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Appendices

A Restaurant price indices

Here, I discuss the estimation of restaurant price indices that capture cross-platform price dif-

ferences and the dependence of platform prices on commission rates. I estimate the parameters

appearing in (5) via the following regression:

log(pjft) = ψj + ψt×region(j) + ϕf + βrjt + γrjt × onlinef + εjft.

Here, j is a menu item, f is a platform, t is a month, and region(j) is the region of the restaurant

selling j (defined below). Menu items are restaurant/menu item category pairs. I use the most

detailed cuisine categories provided by Numerator; examples include bottled soda, corned beef

sandwich, milk shakes, and fries.

The fixed effects ψj capture heterogeneity across menu items. The ψt×region(j) terms control for

time trends in prices that possibly vary across geography. Each state has up to two regions, the

parts that never imposed a commission cap policy by June 2021 and those that at some point did.

I define pjft as the median price paid for menu item j in month t on platform f . To ensure that the

restaurant/item category pairs correspond to unique menu items, I limit the sample to observations

for which the interquartile range of prices is less than 5% of the median price and the number of

orders underlying the observation is at least 5. I additionally eliminate ZIPs with commission caps

that exempted chain restaurants for the analysis. Last, I drop the five chains with the most orders

(McDonalds, Chick-Fil-A, Taco Bell, Wendy’s, and Burger King) given that large chains are most

likely to have negotiated commission rates lower than 30% absent commission caps, which would

make their prices less sensitive to commission caps.

Table 16 provides estimates from two specifications: on in rjt is the commission level and another in

which it is an indicator for the presence of a commission cap. The results for the first specification,

which I use to compute price indices, suggest that a one percentage point increase in the commission

rate raises online prices by about 0.61%, with no significant effect on direct-order prices. The

results from the second suggest that commission caps reduced platform prices by about 5% without

significantly impacting direct-order prices. The results also suggest that prices on platforms are
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0.13–0.16 log points (14–17%) higher than those for direct orders. The final rows of Table 16 report

DoorDash-to-direct price ratios predicted by the commission-rate regression. These are 14.3% for

uncapped (30% commission) areas and 4.0% for 15% commission areas.

Table 16: Restaurant pricing regressions

Commission level Cap indicator
Coefficient Estimate SE Estimate SE

DoorDash -0.0555 (0.0529) 0.1320 (0.0109)

Grubhub -0.0259 (0.0516) 0.1600 (0.0126)

Uber Eats -0.0456 (0.0529) 0.1420 (0.0118)

Commission rate -0.0232 (0.0559) - -
Commission rate × online 0.6310 (0.1750) - -
Commission cap - - 0.0029 (0.0075)

Commission cap × online - - -0.0471 (0.0204)

DD/offline ratio (30% comm.) 1.143 0.012 1.141 0.012
DD/offline ratio (15% comm.) 1.040 0.011 1.089 0.025

Notes: the sample size is N = 5672. Observations are weighted by the populations of their regions region(j).

To obtain additional pricing evidence, I collected supplementary data on prices from platform and

restaurant websites from a random sample of restaurants in December 2022. The advantage of

using these data is that it eliminates the need to infer menu items, which are directly observed on

restaurant websites, and the data are not selected based on consumer orders. Online Appendix

O.6 details the analysis of pricing using these data. I find that prices for platform orders are 13%

higher than for direct orders absent commission caps and that 15% caps reduce the gap to 7% (the

results from the Numerator approach,14% and 4%, are somewhat similar).

Last, I choose p̄ in equation (5) so that the mean price for DoorDash in an area with 30% commis-

sions equals $21.90, which was the mean DoorDash basket subtotal before tips and taxes in areas

without a commission cap in Q2 2021.

B Estimation of platform adoption model

This appendix details the GMM estimator used to estimate the restaurant platform adoption

model. Let nJ be the number of restaurants in the sample, and let GnJ denote the nJ -vector of

observed platform adoption choices. Additionally, let Πe
nJ

denote a nJ × nG matrix with (j, k)

entry equal to restaurant j’s expected variable profits from selecting the kth platform subset Gk.

Here, nG is the number of such subsets. Let Dj be the lo population under age 35 within five miles

of restaurant j, which serves as a shifter of adoption profitability.

The first set of moment conditions match-model choice probabilities to observed adoption frequen-

cies. Define

gτmG(Gj ,Π
e
j , Dj ; θ

adopt) = 1{m(j) = m, τ(j) = τ}
(
Qτm(G,Πe

j ; θ
adopt) − 1{Gj = G}

)
,

for all types τ , markets m, and platform subsets G, where τ(j) and m(j) are restaurant j’s type
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and market. The predicted choice probability is

Qτm(G,Πe
j ; θ

adopt) = Pr

(
G = arg max

G′

[
Π̄j(G′, P̂m) −Kτm(G) + ωj(G)

]
| θadopt

)
At the true parameter vector θadopt0 , we have E[gτmG(Gj ,Π

e
j , Dj ; θ

adopt
0 )] = 0. The corresponding

sample moment conditions are

1

nJ

nJ∑
j=1

gτmG(Gj ,Π
e
j , Dj ; θ̂

adopt) = 0 ∀τ,m,G. (19)

I use a second set of moments to target the Σ parameters governing substitution. These moments

match covariances between Dj and platform adoption measures in the data and as predicted by

the model. The two measures of platform adoption that I use are (i) an indicator for whether

the restaurant joins any online platform and (ii) the number of online platforms joined. These

moments are based on

gω,1(Gj ,Π
e
j , Dj ; θ

adopt) = Dj ×
(
1{Gj ̸= {0}} − (1 −Q({0},Πe

j ; θ
adopt))

)
gω,2(Gj ,Π

e
j , Dj ; θ

adopt) = Dj ×

(
|Gj | −

∑
G

|G| ×Q(G,Πe
j ; θ

adopt)

)
,

where |G| is the cardinality of set G. Under the true model parameters θadopt0 , we have E[gω(Gj ,Π
e
j , Dj ; θ

adopt
0 )] =

0. The corresponding sample moment conditions are

1

nJ

nJ∑
j=1

gω,k(Gj ,Π
e
j , Dj ; θ̂

adopt) = 0, k ∈ {1, 2}. (20)

The estimator θ̂adopt solves equations (19) and (20). The model is just-identified. Because ex-

actly computing each restaurant’s expected profits is computationally intensive, I consider two

approximations: (i) simulation-based approximation of expected profits, and (ii) a deterministic

approximation using expected counts of adopters by type and ZIP. These two methods yield near-

identical results: regressing simulated profits on deterministic approximations yields a coefficient

of 1.001 and an R2 of 1 to three decimal places.

The second approach, which ignores Jensen’s inequality, introduces negligible bias due to the large

number of competitors (median of 1,448 within five miles) and thus limited variance in adoption

shares. I therefore use the deterministic method for both estimation and counterfactuals. See

Online Appendix O.13 for further details.
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